European Biophysics Journal

, Volume 48, Issue 5, pp 475–484 | Cite as

Synchrotron radiation-based FTIR spectro-microscopy of the brainstem of the hSOD1 G93A rat model of amyotrophic lateral sclerosis

  • Pavle Andjus
  • Stefan Stamenković
  • Tanja DučićEmail author
Original Article


Pathological mechanisms in amyotrophic lateral sclerosis (ALS), a fatal neurodegenerative disease, are still poorly understood. One subset of familial ALS cases is caused by mutations in the metallo-enzyme copper–zinc superoxide dismutase (SOD1), increasing the susceptibility of the SOD1 protein to form insoluble intracellular aggregates. Here, we employed synchrotron radiation-based Fourier transform infrared spectroscopy and microscopy to investigate brainstem cross-sections from the transgenic hSOD1 G93A rat model of ALS that overexpresses human-mutated SOD1. We compared the biomacromolecular organic composition in brainstem tissue cross-sections of ALS rats and their non-transgenic littermates (NTg). We demonstrate that the proteins and especially their antiparallel β-sheet structure significantly differed in all three regions: the facial nucleus (FN), the gigantocellular reticular nucleus (GRN) and the trigeminal motor nucleus (TMN) in the brainstem tissue of ALS rats. The protein levels varied between different brainstem areas, with the highest concentration observed in the region of the FN in the brainstem tissue of NTg animals. Furthermore, the concentration of lipids and esters was significantly decreased in the TMN and FN of ALS animals. A similar pattern was detected for choline and phosphate assigned to nucleic acids with the highest concentrations in the FN of NTg animals. The spectroscopic analysis showed significant differences in phosphates, amide and lipid structure in the FN of NTg animals in comparison with the same area of ALS rats. These results show that the hG93A SOD1 mutation causes metabolic cellular changes and point to a link between bioorganic composition and hallmarks of protein aggregation.


Amyotrophic lateral sclerosis SOD1 Brainstem FTIR Biomolecular composition Protein aggregation 



We thank the ALBA synchrotron light source for the beamtime allocation. TD’s work was carried out with financial support of the ALBA in-house research. This work was also supported by the Ministry of education, science and technological development of the Republic of Serbia (MESTD RS), Grant no. III41005 and the Biostruct-X project no. 5977. We thank Dr. Martin Kreuzer for help during the FTIR analysis. We declare all competing interests in relation to their work. The authors declare that they have no competing interests.

Author contributions

Conceptualization: TD, SS and PRA. Investigation: TD and SS. Formal analysis: TD. Visualization: TD and SS. Writing—original draft: TD. Writing—review and editing: TD.


  1. Andjus PR, Bataveljić D, Vanhoutte G, Mitrecic D, Pizzolante F, Djogo N, Nicaise C, Kengne FG, Gangitano C, Michetti F, van der Linden A, Pochet R, Bačić G (2009) In vivo morphological changes in animal models of amyotrophic lateral sclerosis and Alzheimer’s-like disease: MRI approach. Anat Rec Adv Integr Anat Evolut Biol 292(12):1882–1892. CrossRefGoogle Scholar
  2. Antzutkin ON, Balbach JJ, Leapman RD, Rizzo NW, Reed J, Tycko R (2000) Multiple quantum solid-state NMR indicates a parallel, not antiparallel, organization of beta-sheets in Alzheimer’s beta-amyloid fibrils. Proc Natl Acad Sci USA 97(24):13045–13050. CrossRefGoogle Scholar
  3. Baker MJ, Trevisan J, Bassan P, Bhargava R, Butler HJ, Dorling KM, Fielden PR, Fogarty SW, Fullwood NJ, Heys KA, Hughes C, Lasch P, Martin-Hirsch PL, Obinaju B, Sockalingum GD, Sulé-Suso J, Strong RJ, Walsh MJ, Wood BR, Gardner P, Martin FL (2014) Using Fourier transform IR spectroscopy to analyze biological materials. Nat Protoc 9(8):1771–1791. CrossRefGoogle Scholar
  4. Balbach JJ, Petkova AT, Oyler NA, Antzutkin ON, Gordon DJ, Meredith SC, Tycko R (2002) Supramolecular structure in full-length Alzheimer’s beta-amyloid fibrils: evidence for a parallel beta-sheet organization from solid-state nuclear magnetic resonance. Biophys J 83(2):1205–1216. CrossRefGoogle Scholar
  5. Bataveljić D, Stamenković S, Bačić G, Andjus PR (2011) Imaging cellular markers of neuroinflammation in the brain of the rat model of amyotrophic lateral sclerosis. Acta Physiol Hung 98(1):27–31. CrossRefGoogle Scholar
  6. Bataveljić D, Nikolić L, Milosević M, Todorović N, Andjus PR (2012) Changes in the astrocytic aquaporin-4 and inwardly rectifying potassium channel expression in the brain of the amyotrophic lateral sclerosis SOD1(G93A) rat model. Glia 60(12):1991–2003. CrossRefGoogle Scholar
  7. Bourassa MW, Brown HH, Borchelt DR, Vogt S, Miller LM (2014) Metal-deficient aggregates and diminished copper found in cells expressing SOD1 mutations that cause ALS. Front Aging Neurosci 6:110. CrossRefGoogle Scholar
  8. Bruijn LI, Miller TM, Cleveland DW (2004) Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 27:723–749. CrossRefGoogle Scholar
  9. Chang LY, Slot JW, Geuze HJ, Crapo JD (1988) Molecular immunocytochemistry of the CuZn superoxide dismutase in rat hepatocytes. J Cell Biol 107(6 Pt 1):2169–2179.
  10. Dasari A, Hughes RM, Wi S, Hung I, Gan Z, Kelly JW, Lim KH (2019) Transthyretin aggregation pathway toward the formation of distinct cytotoxic oligomers. Sci Rep 9(1):33. CrossRefGoogle Scholar
  11. Diem M, Romeo M, Matthäus C, Miljkovic M, Miller L, Lasch P (2004) Comparison of Fourier transform infrared (FTIR) spectra of individual cells acquired using synchrotron and conventional sources. Infrared Phys Technol 45(5–6):331–338. CrossRefGoogle Scholar
  12. Dobrowolny G, Lepore E, Martini M, Barberi L, Nunn A, Scicchitano BM, Musarò A (2018) Metabolic changes associated with muscle expression of SOD1G93A. Front Physiol 9:831. CrossRefGoogle Scholar
  13. Dringen R, Scheiber IF, Mercer JFB (2013) Copper metabolism of astrocytes. Front Aging Neurosci 5:9. CrossRefGoogle Scholar
  14. Dučić T, Stamenković S, Lai B, Andjus P, Lučić V (2019) Multimodal synchrotron radiation microscopy of intact astrocytes from the hSOD1 G93A rat model of amyotrophic lateral sclerosis. Anal Chem 91(2):1460–1471. CrossRefGoogle Scholar
  15. Ferri A, Coccurello R (2017) ‘What is "hyper" in the ALS hypermetabolism? Mediators Inflamm 2017:7821672. CrossRefGoogle Scholar
  16. Hackett MJ, McQuillan JA, El-Assaad F, Aitken JB, Levina A, Cohen DD, Siegele R, Carter EA, Grau GE, Hunt NH, Lay PA (2011) Chemical alterations to murine brain tissue induced by formalin fixation: implications for biospectroscopic imaging and mapping studies of disease pathogenesis. Analyst 136(14):2941. CrossRefGoogle Scholar
  17. Hayashi Y, Homma K, Ichijo H (2016) SOD1 in neurotoxicity and its controversial roles in SOD1 mutation-negative ALS. Adv Biol Regul 60:95–104. CrossRefGoogle Scholar
  18. Howland D, Liu J, She Y et al (2002) Focal loss of the glutamate transporter EAAT2 in a transgenic rat model of SOD1 mutant-mediated amyotrophic lateral sclerosis (ALS). Proc Nat Acad Sci 99(3):1604–1609. CrossRefGoogle Scholar
  19. Jahan I, Nayeem SM (2018) Effect of urea, arginine, and ethanol concentration on aggregation of 179CVNITV184 fragment of sheep prion protein. ACS Omega 3(9):11727–11741. CrossRefGoogle Scholar
  20. Joardar A, Manzo E, Zarnescu DC (2017) Metabolic dysregulation in amyotrophic lateral sclerosis: challenges and opportunities. Curr Genet Med Rep 5(2):108–114. CrossRefGoogle Scholar
  21. Kakuda K, Yamaguchi KI, Kuwata K, Honda R (2018) A valine-to-lysine substitution at position 210 induces structural conversion of prion protein into a β-sheet rich oligomer. Biochem Biophys Res Commun 506:81–86. CrossRefGoogle Scholar
  22. Kastyak MZ, Szczerbowska-Boruchowska M, Adamek D, Tomik B, Lankosz M, Gough KM (2010) Pigmented creatine deposits in Amyotrophic Lateral Sclerosis central nervous system tissues identified by synchrotron Fourier Transform Infrared microspectroscopy and X-ray fluorescence spectromicroscopy. Neuroscience 166(4):1119–1128. CrossRefGoogle Scholar
  23. Malek K, Wood BR, Bambery KR (2014) FTIR imaging of tissues: techniques and methods of analysis. In: Optical spectroscopy and computational methods in biology and medicine. Springer, Dordrecht, pp 419–473.
  24. Miller LM, Bourassa MW (1828) Smith RJ (2013) FTIR spectroscopic imaging of protein aggregation in living cells. Biochim Biophys Acta (BBA) Biomembr 10:2339–2346. Google Scholar
  25. Navone F, Genevini P, Borgese N (2015) Autophagy and neurodegeneration: insights from a cultured cell model of ALS. Cells 4(3):354–386. CrossRefGoogle Scholar
  26. Okada Y, Okubo K, Ikeda K, Yano Y, Hoshino M, Hayashi Y, Kiso Y, Itoh-Watanabe H, Naito A, Matsuzaki K (2019) Toxic amyloid tape: a novel mixed antiparallel/parallel β-sheet structure formed by amyloid β-protein on GM1 clusters. ACS Chem Neurosci 10(1):563–572. CrossRefGoogle Scholar
  27. Ravera S, Bonifacino T, Bartolucci M, Milanese M, Gallia E, Provenzano F, Cortese K, Panfoli I, Bonanno G (2018) Characterization of the mitochondrial aerobic metabolism in the pre- and perisynaptic districts of the SOD1G93A mouse model of amyotrophic lateral. Mol Neurobiol 55(12):9220–9233. CrossRefGoogle Scholar
  28. Roeters SJ, Iyer A, Pletikapić G, Kogan V, Subramaniam V, Woutersen S (2017) Evidence for intramolecular antiparallel beta-sheet structure in alpha-synuclein fibrils from a combination of two-dimensional infrared spectroscopy and atomic force microscopy. Sci Rep 7:41051. CrossRefGoogle Scholar
  29. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62. CrossRefGoogle Scholar
  30. Sarroukh R, Goormaghtigh E, Ruysschaert J-M (1828) Raussens V (2013) ATR-FTIR: a “rejuvenated” tool to investigate amyloid proteins. Biochim Biophys Acta (BBA) Biomembr 10:2328–2338. Google Scholar
  31. Seetharaman SV, Prudencio M, Karch C, Holloway SP, Borchelt DR, Hart PJ (2009) Immature copper–zinc superoxide dismutase and familial amyotrophic lateral sclerosis. Exp Biol Med 234(10):1140–1154. CrossRefGoogle Scholar
  32. Stamenković S, Dučić T, Stamenković V, Kranz A, Andjus PR (2017) Imaging of glial cell morphology, SOD1 distribution and elemental composition in the brainstem and hippocampus of the ALS hSOD1 G93A rat. Neuroscience 357:37–55. CrossRefGoogle Scholar
  33. Streifel KM, Miller J, Mouneimne R, Tjalkens RB (2013) Manganese inhibits ATP-induced calcium entry through the transient receptor potential channel TRPC3 in astrocytes. Neurotoxicology 34:160–166. CrossRefGoogle Scholar
  34. Szczerbowska-Boruchowska M, Chwiej J, Lankosz M, Adamek D, Wojcik S, Krygowska-Wajs A, Tomik B, Bohic S, Susini J, Simionovici A, Dumas P, Kastyak M (2005) Intraneuronal investigations of organic components and trace elements with the use of synchrotron radiation. X-Ray Spectrom 34(6):514–520. CrossRefGoogle Scholar
  35. Yousef I, Ribó L, Crisol A, Šics I, Ellis G, Ducic T, Kreuzer M, Benseny-Cases N, Quispe M, Dumas P, Lefrançois S, Moreno T, García G, Ferrer S, Nicolas J, Aranda MAG (2017) MIRAS: the infrared synchrotron radiation beamline at ALBA. Synchrotron Radiat News 30(4):4–6. CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2019

Authors and Affiliations

  • Pavle Andjus
    • 1
  • Stefan Stamenković
    • 1
  • Tanja Dučić
    • 2
    Email author
  1. 1.Faculty of Biology, Center for Laser Microscopy-CLMUniversity of BelgradeBelgradeSerbia
  2. 2.CELLS-ALBABarcelonaSpain

Personalised recommendations