European Biophysics Journal

, Volume 48, Issue 1, pp 25–34 | Cite as

Effect of triphenylphosphonium moiety on spatial structure and biointeractions of stereochemical variants of YRFK motif

  • Ruslan Garifullin
  • Dmitriy S. Blokhin
  • Rezeda A. Akhmadishina
  • Natalia V. Petrova
  • Alexandra M. Kusova
  • Vladimir V. Klochkov
  • Timur I. Abdullin
Original Article


Chemical modification of therapeutic peptides is an important approach to improving their physicochemical and pharmacokinetic properties. The triphenylphosphonium (TPP) cation has proved to be a powerful modifier; however, its effects on peptide structure and activity remain uncharacterized. In this study, cytoprotective tetrapeptides based on the YRFK opioid motif with l- or d-Arg residues were linked to (triphenylphosphonio)carboxylic acids with ethylene and pentylene spacers (TPP-3 and TPP-6 groups, respectively). The three-dimensional structure of the oligopeptides was analyzed by NMR spectroscopy, computational methods and circular dichroism (CD). A more compact and bent structure with segregated aromatic groups was revealed for the d-arginine-containing tetrapeptide and its TPP-6 derivative. The TPP moiety caused structure-organizing effect on the tetrapeptides, resulting in transition from random coil to β-sheet structures, and decreased the peptide backbone flexibility up to ten times. The TPP-3-modified oligopeptide with the lowest RMSD value (ca. 0.05 Å) was characterized by intrapeptide hydrophobic interactions between the TPP and side groups of Tyr and Phe residues accompanied by strong CD induction. The TPP-6-modified oligopeptides showed enhanced ability to form intermolecular associates and disturb liposomal membranes. The relationship between the spatial structure of the oligopeptides and some of their biologically relevant interactions were additionally revealed and are discussed.


Cationic–aromatic oligopeptides YRFK motif Triphenylphosphonium derivatives NMR spectroscopy Three-dimensional structure Biointeractions 



This work was performed according to the Russian Government Program of Competitive Growth of the Kazan Federal University. R. G. acknowledges the Russian Foundation for Basic Research (Grant no. 16-33-60146). Dr. T. Mukhametzyanov from Kazan Federal University is acknowledged for his assistance in performing CD measurements. The equipment of Interdisciplinary Centre for Shared Use of Kazan Federal University was used.

Supplementary material

249_2018_1327_MOESM1_ESM.docx (1.2 mb)
Supplementary material 1 (DOCX 1208 kb)


  1. Abu-Gosh SE, Kolvazon N, Tirosh B, Ringel I, Yavin E (2009) Multiple triphenylphosphonium cations shuttle a hydrophilic peptide into mitochondria. Mol Pharm 6:1138–1144CrossRefGoogle Scholar
  2. Adamska-Bartłomiejczyk A, Borics A, Tömböly C, Dvorácskó S, Lisowski M, Kluczyk A, Wołczański G, Piekielna-Ciesielska J, Janecka A (2017) Synthesis, receptor binding studies, optical spectroscopic and in silico structural characterization of morphiceptin analogs with cis-4-amino-l-proline residues. J Pept Sci 23:864–870CrossRefGoogle Scholar
  3. Adessi C, Soto C (2002) Converting a peptide into a drug: strategies to improve stability and bioavailability. Curr Med Chem 9:963–978CrossRefGoogle Scholar
  4. Akhmadishina RA, Garifullin R, Petrova NV, Kamalov MI, Abdullin TI (2018) Triphenylphosphonium moiety modulates proteolytic stability and potentiates neuroprotective activity of antioxidant tetrapeptides in vitro. Front Pharmacol 9:115CrossRefGoogle Scholar
  5. Andrea G, Andrea C, Paolo R, Gianfranco B (2005) Carnosine and carnosine-related antioxidants: a review. Curr Med Chem 12:2293–2315CrossRefGoogle Scholar
  6. Arslan E, Hatip Koc M, Uysal O, Dikecoglu B, Topal AE, Garifullin R, Ozkan AD, Dana A, Hermida-Merino D, Castelletto V, Edwards-Gayle C, Baday S, Hamley I, Tekinay AB, Guler MO (2017) Supramolecular peptide nanofiber morphology affects mechanotransduction of stem cells. Biomacromolecules 18:3114–3130CrossRefGoogle Scholar
  7. Asin-Cayuela J, Manas A-RB, James AM, Smith RAJ, Murphy MP (2004) Fine-tuning the hydrophobicity of a mitochondria-targeted antioxidant. FEBS Lett 571:9–16CrossRefGoogle Scholar
  8. Berger S, Braun S (2004) 200 and more NMR experiments. Wiley, New YorkGoogle Scholar
  9. Blokhin DS, Fayzullina AR, Filippov AV, Karataeva FK, Klochkov VV (2015a) Spatial structure of fibrinopeptide B in water solution with DPC micelles by NMR spectroscopy. J Mol Struct 1102:91–94CrossRefGoogle Scholar
  10. Blokhin DS, Filippov AV, Antzutkin ON, Afonin S, Klochkov VV (2015b) Spatial structures of PAP(262–270) and PAP(274–284), two selected fragments of PAP(248–286), an enhancer of HIV infectivity. Appl Magn Reson 46:757–769CrossRefGoogle Scholar
  11. Dai D-F, Chen T, Szeto H, Nieves-Cintrón M, Kutyavin V, Santana LF, Rabinovitch PS (2011) Mitochondrial targeted antioxidant peptide ameliorates hypertensive cardiomyopathy. J Am Coll Cardiol 58:73–82CrossRefGoogle Scholar
  12. Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128CrossRefGoogle Scholar
  13. Garifullin R, Guler MO (2015) Supramolecular chirality in self-assembled peptide amphiphile nanostructures. Chem Commun 51:12470–12473CrossRefGoogle Scholar
  14. Gentilucci L, De Marco R, Cerisoli L (2010) Chemical modifications designed to improve peptide stability: incorporation of non-natural amino acids, pseudo-peptide bonds, and cyclization. Curr Pharm Des 16(28):3185–3203CrossRefGoogle Scholar
  15. Hall V, Sklepari M, Rodger A (2014) Protein secondary structure prediction from circular dichroism spectra using a self-organizing map with concentration correction. Chirality 26:471–482CrossRefGoogle Scholar
  16. Hamamoto K, Kida Y, Zhang Y, Shimizu T, Kuwano K (2013) Antimicrobial activity and stability to proteolysis of small linear cationic peptides with d-amino acid substitutions. Microbiol Immunol 46:741–749CrossRefGoogle Scholar
  17. Khailova LS, Nazarov PA, Sumbatyan NV, Korshunova GA, Rokitskaya TI, Dedukhova VI, Antonenko YN, Skulachev VP (2015) Uncoupling and toxic action of alkyltriphenylphosphonium cations on mitochondria and the bacterium Bacillus subtilis as a function of alkyl chain length. Biochemistry (Moscow) 80:1589–1597CrossRefGoogle Scholar
  18. Kononova O, Litvinov RI, Blokhin DS, Klochkov VV, Weisel JW, Bennett JS, Barsegov V (2017) Mechanistic basis for the binding of RGD- and AGDV-peptides to the platelet integrin αIIbβ3. Biochemistry 56:1932–1942CrossRefGoogle Scholar
  19. Mangoni ML, Papo N, Saugar JM, Barra D, Shai Y, Simmaco M, Rivas L (2006) Effect of natural l- to d-amino acid conversion on the organization, membrane binding, and biological function of the antimicrobial peptides bombinins H. Biochemistry 45:4266–4276CrossRefGoogle Scholar
  20. Mares-Guia M, Shaw E (1965) Studies on the active center of trypsin: the binding of amidines and guanidines as models of the substrate side chain. J Biol Chem 240:1579–1585Google Scholar
  21. Meng H, Kumar K (2007) Antimicrobial activity and protease stability of peptides containing fluorinated amino acids. J Am Chem Soc 129:15615–15622CrossRefGoogle Scholar
  22. Murphy MP, Smith RAJ (2007) Targeting antioxidants to mitochondria by conjugation to lipophilic cations. Annu Rev Pharmacol Toxicol 47:629–656CrossRefGoogle Scholar
  23. Oleksyszyn J, Powers JC (1994) [30] Amino acid and peptide phosphonate derivatives as specific inhibitors of serine peptidases. Methods Enzymol 244:423–441CrossRefGoogle Scholar
  24. Olsen JV, Ong S-E, Mann M (2004) Trypsin cleaves exclusively C-terminal to arginine and lysine residues. Mol Cell Proteom 3:608–614CrossRefGoogle Scholar
  25. Pettersen EF, Goddard TD, Huang CC, Couch GS, Greenblatt DM, Meng EC, Ferrin TE (2004) UCSF Chimera—a visualization system for exploratory research and analysis. J Comput Chem 25:1605–1612CrossRefGoogle Scholar
  26. Pugachev MV, Shtyrlin NV, Sysoeva LP, Nikitina EV, Abdullin TI, Iksanova AG, Ilaeva AA, Musin RZ, Berdnikov EA, Shtyrlin YG (2013) Synthesis and antibacterial activity of novel phosphonium salts on the basis of pyridoxine. Bioorg Med Chem 21:4388–4395CrossRefGoogle Scholar
  27. Rose GD, Glerasch LM, Smith JA (1985) Turns in peptides and proteins. In: Anfinsen CB, Edsall JT, Richards FM (eds) Advances in protein chemistry, vol 37. Academic Press, New York, pp 1–109Google Scholar
  28. Ross MF, Filipovska A, Smith RAJ, Gait MJ, Murphy MP (2004) Cell-penetrating peptides do not cross mitochondrial membranes even when conjugated to a lipophilic cation: evidence against direct passage through phospholipid bilayers. Biochem J 383:457CrossRefGoogle Scholar
  29. Rule GS, Hitchens TK (2006) Fundamentals of protein NMR spectroscopy. Springer, The NetherlandsGoogle Scholar
  30. Schrank E, Wagner G, Zangger K (2013) Solution NMR studies on the orientation of membrane-bound peptides and proteins by paramagnetic probes. Molecules 18:7407CrossRefGoogle Scholar
  31. Schwieters CD, Kuszewski JJ, Tjandra N, Clore GM (2003) The Xplor-NIH NMR molecular structure determination package. J Magn Reson 160:65–73CrossRefGoogle Scholar
  32. Shiba K (2010) Natural and artificial peptide motifs: their origins and the application of motif-programming. Chem Soc Rev 39:117–126CrossRefGoogle Scholar
  33. Szeto HH (2006) Cell-permeable, mitochondrial-targeted, peptide antioxidants. AAPS J 8:E277–E283CrossRefGoogle Scholar
  34. Szeto HH (2008) Mitochondria-targeted cytoprotective peptides for ischemia-reperfusion injury. Antioxid Redox Signal 10:601–619CrossRefGoogle Scholar
  35. Torres AM, Menz I, Alewood PF, Bansal P, Lahnstein J, Gallagher CH, Kuchel PW (2002) d-Amino acid residue in the C-type natriuretic peptide from the venom of the mammal, Ornithorhynchus anatinus, the Australian platypus. FEBS Lett 524:172–176CrossRefGoogle Scholar
  36. Torres AM, Tsampazi M, Tsampazi C, Kennett Eleanor C, Belov K, Geraghty Dominic P, Bansal Paramjit S, Alewood Paul F, Kuchel PW (2006) Mammalian l-to-d-amino-acid-residue isomerase from platypus venom. FEBS Lett 580:1587–1591CrossRefGoogle Scholar
  37. Tsepaeva OV, Nemtarev AV, Abdullin TI, Grigor’eva LR, Kuznetsova EV, Akhmadishina RA, Ziganshina LE, Cong HH, Mironov VF (2017) Design, synthesis, and cancer cell growth inhibitory activity of triphenylphosphonium derivatives of the triterpenoid betulin. J Nat Prod 80:2232–2239CrossRefGoogle Scholar
  38. Ung P, Winkler DA (2011) Tripeptide motifs in biology: targets for peptidomimetic design. J Med Chem 54:1111–1125CrossRefGoogle Scholar
  39. Usachev KS, Filippov AV, Antzutkin ON, Klochkov VV (2013) Use of a combination of the RDC method and NOESY NMR spectroscopy to determine the structure of Alzheimer’s amyloid Aβ10–35 peptide in solution and in SDS micelles. Eur Biophys J 42:803–810CrossRefGoogle Scholar
  40. Usachev KS, Efimov SV, Kolosova OA, Klochkova EA, Aganov AV, Klochkov VV (2015) Antimicrobial peptide protegrin-3 adopt an antiparallel dimer in the presence of DPC micelles: a high-resolution NMR study. J Biomol NMR 62:71–79CrossRefGoogle Scholar
  41. Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M (2010) Synthetic therapeutic peptides: science and market. Drug Discov Today 15(1–2):40–56CrossRefGoogle Scholar
  42. Warschawski DE, Arnold AA, Beaugrand M, Gravel A, Chartrand É, Marcotte I (2011) Choosing membrane mimetics for NMR structural studies of transmembrane proteins. Biochim Biophys Acta (BBA) Biomembr 1808:1957–1974CrossRefGoogle Scholar
  43. Wei G-X, Bobek LA (2005) Human salivary mucin MUC7 12-Mer-l and 12-Mer-d peptides: antifungal activity in saliva, enhancement of activity with protease inhibitor cocktail or EDTA, and cytotoxicity to human cells. Antimicrob Agents Chemother 49:2336–2342CrossRefGoogle Scholar
  44. Weißhoff H, Präsang C, Henklein P, Frömmel C, Zschunke A, Mügge C (1999) Mimicry of βII′-turns of proteins in cyclic pentapeptides with one and without d-amino acids. Eur J Biochem 259:776–789CrossRefGoogle Scholar
  45. Witt KA, Gillespie TJ, Huber JD, Egleton RD, Davis TP (2001) Peptide drug modifications to enhance bioavailability and blood–brain barrier permeability. Peptides 22:2329–2343CrossRefGoogle Scholar
  46. Wu L, McElheny D, Huang R, Keiderling TA (2009) Role of tryptophan–tryptophan interactions in trpzip β-hairpin formation, structure, and stability. Biochemistry 48:10362–10371CrossRefGoogle Scholar
  47. Zielonka J, Joseph J, Sikora A, Hardy M, Ouari O, Vasquez-Vivar J, Cheng G, Lopez M, Kalyanaraman B (2017) Mitochondria-targeted triphenylphosphonium-based compounds: syntheses, mechanisms of action, and therapeutic and diagnostic applications. Chem Rev 117:10043–10120CrossRefGoogle Scholar

Copyright information

© European Biophysical Societies' Association 2018

Authors and Affiliations

  • Ruslan Garifullin
    • 1
  • Dmitriy S. Blokhin
    • 1
    • 2
  • Rezeda A. Akhmadishina
    • 1
  • Natalia V. Petrova
    • 1
  • Alexandra M. Kusova
    • 1
    • 3
  • Vladimir V. Klochkov
    • 2
  • Timur I. Abdullin
    • 1
  1. 1.Institute of Fundamental Medicine and BiologyKazan (Volga Region) Federal UniversityKazanRussia
  2. 2.Institute of PhysicsKazan (Volga Region) Federal UniversityKazanRussia
  3. 3.Kazan Institute of Biochemistry and Biophysics FSBIS KSC RASKazanRussia

Personalised recommendations