Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

16S rRNA Sequencing Detected Profftella, Liberibacter, Wolbachia, and Diplorickettsia from Relatives of the Asian Citrus Psyllid

Abstract

The Asian citrus psyllid Diaphorina citri (Hemiptera: Psylloidea) is a serious pest of citrus species worldwide because it transmits Candidatus Liberibacter spp. (Alphaproteobacteria: Rhizobiales), the causative agents of the incurable citrus disease, huanglongbing or greening disease. Diaphorina citri possesses a specialized organ called a bacteriome, which harbors vertically transmitted intracellular mutualists, Ca. Carsonella ruddii (Gammaproteobacteria: Oceanospirillales) and Ca. Profftella armatura (Gammaproteobacteria: Betaproteobacteriales). Whereas Carsonella is a typical nutritional symbiont, Profftella is an unprecedented type of toxin-producing defensive symbiont, unusually sharing organelle-like features with nutritional symbionts. Additionally, many D. citri strains are infected with Wolbachia, which manipulate reproduction in various arthropod hosts. In the present study, in an effort to obtain insights into the evolution of symbioses between Diaphorina and bacteria, microbiomes of psyllids closely related to D. citri were investigated. Bacterial populations of Diaphorina cf. continua and Diaphorina lycii were analyzed using Illumina sequencing of 16S rRNA gene amplicons and compared with data obtained from D. citri. The analysis revealed that all three Diaphorina spp. harbor Profftella as well as Carsonella lineages, implying that Profftella is widespread within the genus Diaphorina. Moreover, the analysis identified Ca. Liberibacter europaeus and Diplorickettsia sp. (Gammaproteobacteria: Diplorickettsiales) in D. cf. continua, and a total of four Wolbachia (Alphaproteobacteria: Rickettsiales) lineages in the three psyllid species. These results provide deeper insights into the interactions among insects, bacteria, and plants, which would eventually help to better manage horticulture.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. 1.

    Percy DM, Crampton-Platt A, Sveinsson S, Lemmon AR, Lemmon EM, Ouvrard D, Burckhardt D (2018) Resolving the psyllid tree of life: phylogenomic analyses of the superfamily Psylloidea (Hemiptera). Syst Entomol 43:762–776. https://doi.org/10.1111/syen.12302

  2. 2.

    Hodkinson ID (1974) The biology of the Psylloidea (Homoptera): a review. Bull Entomol Res 64:325–338

  3. 3.

    Sandstrom J, Moran N, Sandström J, Moran N (1999) How nutritionally imbalanced is phloem sap for aphids? Entomol Exp Appl 91:203–210

  4. 4.

    Ziegler H, Pirson A, Zimmermann MH (1975) Nature of transported substances. In: Zimmermann MH, Milburn JA (eds) Transport in plants I. Springer-Verlag, New York, pp 59–100

  5. 5.

    Nakabachi A, Ishikawa H (1999) Provision of riboflavin to the host aphid, Acyrthosiphon pisum, by endosymbiotic bacteria, Buchnera. J Insect Physiol 45:1–6

  6. 6.

    Nakabachi A, Koshikawa S, Miura T, Miyagishima S (2010) Genome size of Pachypsylla venusta (Hemiptera: Psyllidae) and the ploidy of its bacteriocyte, the symbiotic host cell that harbors intracellular mutualistic bacteria with the smallest cellular genome. Bull Entomol Res 100:27–33. https://doi.org/10.1017/S0007485309006737

  7. 7.

    Profft J (1937) Beiträge zur Symbiose der Aphiden und Psylliden. Z Morphol Ökol Tiere 32:289–326

  8. 8.

    Buchner P (1965) Endosymbiosis of animals with plant microorganisms. Interscience, New York

  9. 9.

    Sloan DB, Moran NA (2012) Genome reduction and co-evolution between the primary and secondary bacterial symbionts of psyllids. Mol Biol Evol 29:3781–3792. https://doi.org/10.1093/molbev/mss180

  10. 10.

    Arp A, Munyaneza JE, Crosslin JM, Trumble J, Bextine B (2014) A global comparison of Bactericera cockerelli (Hemiptera: Triozidae) microbial communities. Environ Entomol 43:344–352. https://doi.org/10.1603/EN13256

  11. 11.

    Overholt WA, Diaz R, Rosskopf E et al (2015) Deep characterization of the microbiomes of Calophya spp. (Hemiptera: Calophyidae) gall-inducing psyllids reveals the absence of plant pathogenic bacteria and three dominant endosymbionts. PLoS One 10:1–16. https://doi.org/10.1371/journal.pone.0132248

  12. 12.

    Hall AAG, Morrow JL, Fromont C, Steinbauer MJ, Taylor GS, Johnson SN, Cook JM, Riegler M (2016) Codivergence of the primary bacterial endosymbiont of psyllids versus host switches and replacement of their secondary bacterial endosymbionts. Environ Microbiol 18:2591–2603. https://doi.org/10.1111/1462-2920.13351

  13. 13.

    Fromont C, Riegler M, Cook JM (2016) Phylogeographic analyses of bacterial endosymbionts in fig homotomids (Hemiptera: Psylloidea) reveal codiversification of both primary and secondary endosymbionts. FEMS Microbiol Ecol 92:fiw205. https://doi.org/10.1093/femsec/fiw205

  14. 14.

    Morrow JL, Hall AAG, Riegler M (2017) Symbionts in waiting: the dynamics of incipient endosymbiont complementation and replacement in minimal bacterial communities of psyllids. Microbiome 5:58. https://doi.org/10.1186/s40168-017-0276-4

  15. 15.

    Fukatsu T, Nikoh N (1998) Two intracellular symbiotic bacteria from the mulberry psyllid Anomoneura mori (Insecta Homoptera). Appl Environ Microbiol 64:3599–3606

  16. 16.

    Spaulding AW, von Dohlen CD (1998) Phylogenetic characterization and molecular evolution of bacterial endosymbionts in psyllids (Hemiptera: Sternorrhyncha). Mol Biol Evol 15:1506–1513

  17. 17.

    Thao ML, Moran NA, Abbot P, Brennan EB, Burckhardt DH, Baumann P (2000) Cospeciation of psyllids and their primary prokaryotic endosymbionts. Appl Environ Microbiol 66:2898–2905

  18. 18.

    Thao ML, Clark MA, Baumann L, Brennan EB, Moran NA, Baumann P (2000) Secondary endosymbionts of psyllids have been acquired multiple times. Curr Microbiol 41:300–304. https://doi.org/10.1007/s002840010138

  19. 19.

    Subandiyah S, Nikoh N, Tsuyumu S et al (2000) Complex endosymbiotic microbiota of the citrus psyllid Diaphorina citri (Homoptera: Psylloidea). Zool Sci 17:983–989

  20. 20.

    Spaulding AW, von Dohlen CD (2001) Psyllid endosymbionts exhibit patterns of co-speciation with hosts and destabilizing substitutions in ribosomal RNA. Insect Mol Biol 10:57–67

  21. 21.

    Thao ML, Clark MA, Burckhardt DH et al (2001) Phylogenetic analysis of vertically transmitted psyllid endosymbionts (Candidatus Carsonella ruddii) based on atpAGD and rpoC: comparisons with 16S-23S rDNA-derived phylogeny. Curr Microbiol 42:419–421

  22. 22.

    Hansen AK, Jeong G, Paine TD, Stouthamer R (2007) Frequency of secondary symbiont infection in an invasive psyllid relates to parasitism pressure on a geographic scale in California. Appl Environ Microbiol 73:7531–7535

  23. 23.

    Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M (2006) The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:267. https://doi.org/10.1126/science.1134196

  24. 24.

    Moran NA, McCutcheon JP, Nakabachi A (2008) Genomics and evolution of heritable bacterial symbionts. Annu Rev Genet 42:165–190. https://doi.org/10.1146/annurev.genet.41.110306.130119

  25. 25.

    Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Annu Rev Entomol 55:247–266. https://doi.org/10.1146/annurev-ento-112408-085305

  26. 26.

    Johnson KN (2015) The impact of Wolbachia on virus infection in mosquitoes. Viruses 7:5705–5717. https://doi.org/10.3390/v7112903

  27. 27.

    Ballinger MJ, Perlman SJ (2019) The defensive Spiroplasma. Curr Opin Insect Sci 32:36–41. https://doi.org/10.1016/j.cois.2018.10.004

  28. 28.

    Wu M, Sun LV, Vamathevan J et al (2004) Phylogenomics of the reproductive parasite Wolbachia pipientis wMel: a streamlined genome overrun by mobile genetic elements. PLoS Biol 2:E69

  29. 29.

    Degnan PH, Yu Y, Sisneros N, Wing RA, Moran NA (2009) Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proc Natl Acad Sci U S A 106:9063–9068

  30. 30.

    Degnan PH, Leonardo TE, Cass BN, Hurwitz B, Stern D, Gibbs RA, Richards S, Moran NA (2010) Dynamics of genome evolution in facultative symbionts of aphids. Environ Microbiol 12:2060–2069. https://doi.org/10.1111/j.1462-2920.2009.02085.x

  31. 31.

    McCutcheon JP, Moran NA (2012) Extreme genome reduction in symbiotic bacteria. Nat Rev Microbiol 10:13–26. https://doi.org/10.1038/nrmicro2670

  32. 32.

    Moran NA, Bennett GM (2014) The tiniest tiny genomes. Annu Rev Microbiol 68:195–215. https://doi.org/10.1146/annurev-micro-091213-112901

  33. 33.

    Nakabachi A, Shigenobu S, Sakazume N, Shiraki T, Hayashizaki Y, Carninci P, Ishikawa H, Kudo T, Fukatsu T (2005) Transcriptome analysis of the aphid bacteriocyte, the symbiotic host cell that harbors an endocellular mutualistic bacterium, Buchnera. Proc Natl Acad Sci U S A 102:5477–5482

  34. 34.

    Nikoh N, McCutcheon JP, Kudo T et al (2010) Bacterial genes in the aphid genome: absence of functional gene transfer from Buchnera to its host. PLoS Genet 6:e1000827

  35. 35.

    Nikoh N, Nakabachi A (2009) Aphids acquired symbiotic genes via lateral gene transfer. BMC Biol 7:12

  36. 36.

    Shigenobu S, Richards S, Cree AGG, Morioka M, Fukatsu T, Kudo T, Miyagishima S, Gibbs RA, Stern DL, Nakabachi A (2010) A full-length cDNA resource for the pea aphid, Acyrthosiphon pisum. Insect Mol Biol 19:23–31. https://doi.org/10.1111/j.1365-2583.2009.00946.x

  37. 37.

    Sloan DB, Nakabachi A, Richards S, Qu J, Murali SC, Gibbs RA, Moran NA (2014) Parallel histories of horizontal gene transfer facilitated extreme reduction of endosymbiont genomes in sap-feeding insects. Mol Biol Evol 31:857–871. https://doi.org/10.1093/molbev/msu004

  38. 38.

    Nakabachi A, Ishida K, Hongoh Y et al (2014) Aphid gene of bacterial origin encodes protein transported to obligate endosymbiont. Curr Biol 24:R640–R641. https://doi.org/10.1016/j.cub.2014.06.038

  39. 39.

    Nakabachi A (2015) Horizontal gene transfers in insects. Curr Opin Insect Sci 7:24–29. https://doi.org/10.1016/j.cois.2015.03.006

  40. 40.

    Halbert SE, Manjunath KL (2004) Asian citrus psyllids (Sternorrhyncha: Psyllidae) and greening disease in citrus: a literature review and assessment of risk in Florida. Fla Entomol 87:330–353

  41. 41.

    Bové JM (2006) Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. J Plant Pathol 88:7–37

  42. 42.

    Grafton-Cardwell EE, Stelinski LL, Stansly PA (2013) Biology and management of Asian citrus psyllid, vector of the huanglongbing pathogens. Annu Rev Entomol 58:413–432. https://doi.org/10.1146/annurev-ento-120811-153542

  43. 43.

    Nakabachi A, Ueoka R, Oshima K et al (2013) Defensive bacteriome symbiont with a drastically reduced genome. Curr Biol 23:1478–1484. https://doi.org/10.1016/j.cub.2013.06.027

  44. 44.

    Dan H, Ikeda N, Fujikami M, Nakabachi A (2017) Behavior of bacteriome symbionts during transovarial transmission and development of the Asian citrus psyllid. PLoS One 12:e0189779. https://doi.org/10.1371/journal.pone.0189779

  45. 45.

    McCutcheon JP, Boyd BM, Dale C (2019) The life of an insect endosymbiont from the cradle to the grave. Curr Biol 29:R485–R495. https://doi.org/10.1016/j.cub.2019.03.032

  46. 46.

    Yamada T, Hamada M, Floreancig P, Nakabachi A (2019) Diaphorin, a polyketide synthesized by an intracellular symbiont of the Asian citrus psyllid, is potentially harmful for biological control agents. PLoS One 14:e0216319. https://doi.org/10.1371/journal.pone.0216319

  47. 47.

    Nakabachi A, Okamura K (2019) Diaphorin, a polyketide produced by a bacterial symbiont of the Asian citrus psyllid, kills various human cancer cells. PLoS One 14:e0218190. https://doi.org/10.1371/journal.pone.0218190

  48. 48.

    Nakabachi A, Fujikami M (2019) Concentration and distribution of diaphorin, and expression of diaphorin synthesis genes during Asian citrus psyllid development. J Insect Physiol 118:103931. https://doi.org/10.1016/j.jinsphys.2019.103931

  49. 49.

    Nakabachi A, Nikoh N, Oshima K, Inoue H, Ohkuma M, Hongoh Y, Miyagishima SY, Hattori M, Fukatsu T (2013) Horizontal gene acquisition of Liberibacter plant pathogens from a bacteriome-confined endosymbiont of their psyllid vector. PLoS One 8:e82612. https://doi.org/10.1371/journal.pone.0082612

  50. 50.

    Meng L, Li X, Cheng X, Zhang H (2019) 16S rRNA gene sequencing reveals a shift in the microbiota of Diaphorina citri during the psyllid life cycle. Front Microbiol 10:1948. https://doi.org/10.3389/fmicb.2019.01948

  51. 51.

    Dossi FCA, da Silva EP, Cônsoli FL (2014) Population dynamics and growth rates of endosymbionts during Diaphorina citri (Hemiptera, Liviidae) ontogeny. Microb Ecol 68:881–889. https://doi.org/10.1007/s00248-014-0463-9

  52. 52.

    Chu CC, Gill TA, Hoffmann M, Pelz-Stelinski KS (2016) Inter-population variability of endosymbiont densities in the Asian citrus psyllid (Diaphorina citri Kuwayama). Microb Ecol 71:999–1007. https://doi.org/10.1007/s00248-016-0733-9

  53. 53.

    Hosseinzadeh S, Shams-Bakhsh M, Mann M, Fattah-Hosseini S, Bagheri A, Mehrabadi M, Heck M (2019) Distribution and variation of bacterial endosymbiont and “Candidatus Liberibacter asiaticus” titer in the Huanglongbing insect vector, Diaphorina citri Kuwayama. Microb Ecol 78:206–222

  54. 54.

    Saha S, Hunter WB, Reese J et al (2012) Survey of endosymbionts in the Diaphorina citri metagenome and assembly of a Wolbachia wDi draft genome. PLoS One 7:e50067. https://doi.org/10.1371/journal.pone.0050067

  55. 55.

    Guidolin AS, Cônsoli FL (2013) Molecular characterization of Wolbachia strains associated with the invasive Asian citrus psyllid Diaphorina citri in Brazil. Microb Ecol 65:475–486. https://doi.org/10.1007/s00248-012-0150-7

  56. 56.

    Lashkari M, Manzari S, Sahragard A, Malagnini V, Boykin LM, Hosseini R (2014) Global genetic variation in the Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae) and the endosymbiont Wolbachia: links between Iran and the USA detected. Pest Manag Sci 70:1033–1040. https://doi.org/10.1002/ps.3643

  57. 57.

    Chu C, Hoffmann M, Braswell WE, Pelz-Stelinski KS (2019) Genetic variation and potential coinfection of Wolbachia among widespread Asian citrus psyllid (Diaphorina citri Kuwayama) populations. Insect Sci 26:671–682. https://doi.org/10.1111/1744-7917.12566

  58. 58.

    Stouthamer R, Breeuwer JA, Hurst GD (1999) Wolbachia pipientis: microbial manipulator of arthropod reproduction. Annu Rev Microbiol 53:71–102. https://doi.org/10.1146/annurev.micro.53.1.71

  59. 59.

    Werren JH, Baldo L, Clark ME (2008) Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 6:741–751. https://doi.org/10.1038/nrmicro1969

  60. 60.

    Pascar J, Chandler CH (2018) A bioinformatics approach to identifying Wolbachia infections in arthropods. PeerJ 6:e5486. https://doi.org/10.7717/peerj.5486

  61. 61.

    Jain M, Fleites LA, Gabriel DW (2017) A small Wolbachia protein directly represses phage lytic cycle genes in “Candidatus Liberibacter asiaticus” within psyllids. mSphere 2:e00171–e00117. https://doi.org/10.1128/mSphereDirect.00171-17

  62. 62.

    Kruse A, Fattah-Hosseini S, Saha S, Johnson R, Warwick E, Sturgeon K, Mueller L, MacCoss M, Shatters RG Jr, Cilia Heck M (2017) Combining ‘omics and microscopy to visualize interactions between the Asian citrus psyllid vector and the Huanglongbing pathogen Candidatus Liberibacter asiaticus in the insect gut. PLoS One 12:e0179531. https://doi.org/10.1371/journal.pone.0179531

  63. 63.

    Mann M, Fattah-Hosseini S, Ammar E-D et al (2018) Diaphorina citri nymphs are resistant to morphological changes induced by “Candidatus Liberibacter asiaticus ” in midgut epithelial cells. Infect Immun 86:e00889–e00817. https://doi.org/10.1128/IAI.00889-17

  64. 64.

    Hosseinzadeh S, Ramsey J, Mann M et al (2019) Color morphology of Diaphorina citri influences interactions with its bacterial endosymbionts and ‘Candidatus Liberibacter asiaticus’. PLoS One 14:e0216599. https://doi.org/10.1371/journal.pone.0216599

  65. 65.

    Loginova M (1978) Novye vidy psillid (Homoptera, Psylloidea) [new species of psyllids (Homoptera, Psylloidea)]. In: Medvedev GS (ed) Novye vidy zhivotnykh [new animal species]. Trudy Zool Inst Akad Nauk SSSR, vol 61, pp 30–123

  66. 66.

    Burckhardt D (1984) The Mediterranean species of Diaphorina Loew (Homoptera, Psylloidea). Phytophaga 2:1–30

  67. 67.

    Hollis D (1987) A new citrus-feeding psyllid from the Comoro Islands, with a review of the Diaphorina amoena species group (Homoptera). Syst Entomol 12:47–61. https://doi.org/10.1111/j.1365-3113.1987.tb00547.x

  68. 68.

    Malenovský I, Burckhardt D (2014) Jumping plant-lice of Socotra Island (Hemiptera: Psylloidea). Acta Entomol Mus Natl Pragae 54(Suppl):23–61

  69. 69.

    Burckhardt D, Yefremova Z, Yegorenkova E (2015) The jumping plant-louse Diaphorina teucrii sp. nov. (Hemiptera, Liviidae) associated with Teucrium (Lamiaceae) and its parasitoid Tamarixia dorchinae sp. nov. (Hymenoptera, Eulophidae) from the Negev desert, Israel. Zootaxa 3920:463–473 https://doi.org/10.11646/zootaxa.3920.3.5

  70. 70.

    Ouvrard D (2019) Psyl’list – the world Psylloidea database. https://www.hemiptera-databases.org/psyllist. Accessed 16 Nov 2019

  71. 71.

    Burckhardt D, Ouvrard D (2012) A revised classification of the jumping plant-lice (Hemiptera: Psylloidea). Zootaxa 34:1–34

  72. 72.

    Loginova M (1972) On the fauna of Psylloidea from Morocco (Homoptera). Comment Biol 47:1–37

  73. 73.

    Rapisarda C (1991) Faunistic and ecological notes on the psyllids of Sardinia. Mem Soc Entomol Ital 69:7–52

  74. 74.

    Conci C, Rapisarda C, Tamanini L (1993) Annotated catalogue of the Italian Psylloidea. First part. (Insecta Homoptera). Atti Acad Roveretana Agiati, Ser VII 242(2B):33–135

  75. 75.

    Illumina (2013) 16S metagenomic sequencing library preparation Part#15044223 Rev.B

  76. 76.

    Bolyen E, Rideout JR, Dillon MR et al (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9

  77. 77.

    Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal 17:10–12

  78. 78.

    Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJ, Holmes SP (2016) DADA2 : High-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869

  79. 79.

    Bokulich NA, Kaehler BD, Rideout J et al (2018) Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 6:90

  80. 80.

    Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421. https://doi.org/10.1186/1471-2105-10-421

  81. 81.

    Pruesse E, Peplies J, Glöckner FO (2012) SINA : accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28:1823–1829. https://doi.org/10.1093/bioinformatics/bts252

  82. 82.

    Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. https://doi.org/10.1093/bioinformatics/btu033

  83. 83.

    Nakabachi A, Ishikawa H, Kudo T (2003) Extraordinary proliferation of microorganisms in aposymbiotic pea aphids, Acyrthosiphon pisum. J Invertebr Pathol 82:152–161. https://doi.org/10.1016/S0022-2011(03)00020-X

  84. 84.

    Nachappa P, Levy J, Pierson E, Tamborindeguy C (2011) Diversity of endosymbionts in the potato psyllid, Bactericera cockerelli (Triozidae), vector of zebra chip disease of potato. Curr Microbiol 62:1510–1520. https://doi.org/10.1007/s00284-011-9885-5

  85. 85.

    Russell JA, Weldon S, Smith AH, Kim KL, Hu Y, Łukasik P, Doll S, Anastopoulos I, Novin M, Oliver KM (2013) Uncovering symbiont-driven genetic diversity across North American pea aphids. Mol Ecol 22:2045–2059. https://doi.org/10.1111/mec.12211

  86. 86.

    Jing X, Wong ACN, Chaston JM, Colvin J, McKenzie C, Douglas AE (2014) The bacterial communities in plant phloem-sap-feeding insects. Mol Ecol 23:1433–1444. https://doi.org/10.1111/mec.12637

  87. 87.

    Cho G, Malenovský I, Lee S (2019) Higher-level molecular phylogeny of jumping plant lice (Hemiptera: Sternorrhyncha: Psylloidea). Syst Entomol 44:638–651. https://doi.org/10.1111/syen.12345

  88. 88.

    Ramsey JS, Chavez JD, Johnson R, Hosseinzadeh S, Mahoney JE, Mohr JP, Robison F, Zhong X, Hall DG, MacCoss M, Bruce J, Cilia M (2017) Protein interaction networks at the host–microbe interface in Diaphorina citri, the insect vector of the citrus greening pathogen. R Soc Open Sci 4:160545. https://doi.org/10.1098/rsos.160545

  89. 89.

    Keremane ML, Ramadugu C, Castaneda A, et al (2015) Report of Candidatus Liberibacter caribbeanus, a new citrus- and psyllid-associated Liberibacter from Colombia, South America. In: APS annual meeting 2015:101-O

  90. 90.

    Lin H, Lou B, Glynn JM et al (2011) The complete genome sequence of “Candidatus Liberibacter solanacearum”, the bacterium associated with potato zebra chip disease. PLoS One 6:e19135. https://doi.org/10.1371/journal.pone.0019135

  91. 91.

    Nelson W, Fisher T, Munyaneza JE (2011) Haplotypes of “Candidatus Liberibacter solanacearum” suggest long-standing separation. Eur J Plant Pathol 130:5–12. https://doi.org/10.1007/s10658-010-9737-3

  92. 92.

    Nelson WR, Sengoda VG, Alfaro-Fernandez AO et al (2013) A new haplotype of “Candidatus Liberibacter solanacearum” identified in the Mediterranean region. Eur J Plant Pathol 135:633–639. https://doi.org/10.1007/s10658-012-0121-3

  93. 93.

    Teresani GR, Bertolini E, Alfaro-fernández A et al (2014) Association of ‘Candidatus Liberibacter solanacearum’ with a vegetative disorder of celery in Spain and development of a real-time PCR method for its detection. Phytopathology 104:804–811

  94. 94.

    Morris J, Shiller J, Mann R, Smith G, Yen A, Rodoni B (2017) Novel ‘Candidatus Liberibacter’ species identified in the Australian eggplant psyllid, Acizzia solanicola. Microb Biotechnol 10:833–844. https://doi.org/10.1111/1751-7915.12707

  95. 95.

    Fagen JR, Leonard MT, Coyle JF, McCullough C, Davis-Richardson AG, Davis MJ, Triplett EW (2014) Liberibacter crescens gen. Nov., sp. nov., the first cultured member of the genus Liberibacter. Int J Syst Evol Microbiol 64:2461–2466. https://doi.org/10.1099/ijs.0.063255-0

  96. 96.

    Raddadi N, Gonella E, Camerota C et al (2011) “Candidatus Liberibacter europaeus” sp. nov. that is associated with and transmitted by the psyllid Cacopsylla pyri apparently behaves as an endophyte rather than a pathogen. Environ Microbiol 13:414–426. https://doi.org/10.1111/j.1462-2920.2010.02347.x

  97. 97.

    Camerota C, Raddadi N, Pizzinat A et al (2012) Incidence of ‘Candidatus Liberibacter europaeus’ and phytoplasmas in Cacopsylla species (Hemiptera: Psyllidae) and their host/shelter plants. Phytoparasitica 40:213–221

  98. 98.

    Thompson S, Fletcher JD, Ziebell H et al (2013) First report of “Candidatus Liberibacter europaeus” associated with psyllid infested scotch broom. New Dis Rep 27:6

  99. 99.

    Syrett P, Fowler SV, Harman HM et al (2007) Establishment of Arytainilla spartiophila Förster (Hemiptera: Psyllidae), a new biological control agent for broom, Cytisus scoparius, in New Zealand. New Zeal Entomol 30:53–62. https://doi.org/10.1080/00779962.2007.9722151

  100. 100.

    Tannières M, Fowler SV, Manaargadoo-Catin L et al (2020) First report of “Candidatus Liberibacter europaeus” in the United Kingdom. New Dis Reports 41:3. https://doi.org/10.5197/j.2044-0588.2020.041.003

  101. 101.

    Pelz-Stelinski KS, Killiny N (2016) Better together: association with ‘Candidatus Liberibacter asiaticus’ increases the reproductive fitness of its insect vector, Diaphorina citri (Hemiptera: Liviidae). Ann Entomol Soc Am 109:371–376. https://doi.org/10.1093/aesa/saw007

  102. 102.

    Mediannikov O, Sekeyova Z, Birg M-L, Raoult D (2010) A novel obligate intracellular gamma-proteobacterium associated with ixodid ticks, Diplorickettsia massiliensis, gen. Nov., Sp. Nov. PLoS One 5:e11478. https://doi.org/10.1371/journal.pone.0011478

  103. 103.

    Subramanian G, Mediannikov O, Angelakis E, Socolovschi C, Kaplanski G, Martzolff L, Raoult D (2012) Diplorickettsia massiliensis as a human pathogen. Eur J Clin Microbiol Infect Dis 31:365–369. https://doi.org/10.1007/s10096-011-1318-7

  104. 104.

    Ishii Y, Matsuura Y, Kakizawa S, Nikoh N, Fukatsu T (2013) Diversity of bacterial endosymbionts associated with Macrosteles leafhoppers vectoring phytopathogenic phytoplasmas. Appl Environ Microbiol 79:5013–5022. https://doi.org/10.1128/AEM.01527-13

  105. 105.

    Tsuchida T, Koga R, Fujiwara A, Fukatsu T (2014) Phenotypic effect of “Candidatus Rickettsiella viridis,” a facultative symbiont of the pea aphid (Acyrthosiphon pisum), and its interaction with a coexisting symbiont. Appl Environ Microbiol 80:525–533. https://doi.org/10.1128/AEM.03049-13

  106. 106.

    Tsuchida T, Koga R, Horikawa M et al (2010) Symbiotic bacterium modifies aphid body color. Science 330(80):1102–1104. https://doi.org/10.1126/science.1195463

  107. 107.

    Tang M, Lv L, Jing S, Zhu L, He G (2010) Bacterial symbionts of the brown planthopper, Nilaparvata lugens (Homoptera: Delphacidae). Appl Environ Microbiol 76:1740–1745. https://doi.org/10.1128/AEM.02240-09

  108. 108.

    Augustinos AA, Santos-Garcia D, Dionyssopoulou E, Moreira M, Papapanagiotou A, Scarvelakis M, Doudoumis V, Ramos S, Aguiar AF, Borges PA, Khadem M, Latorre A, Tsiamis G, Bourtzis K (2011) Detection and characterization of Wolbachia infections in natural populations of aphids: is the hidden diversity fully unraveled? PLoS One 6:e28695. https://doi.org/10.1371/journal.pone.0028695

  109. 109.

    Cooper WR, Swisher KD, Garczynski SF et al (2015) Wolbachia infection differs among divergent mitochondrial haplotypes of Bactericera cockerelli (Hemiptera: Triozidae). Ann Entomol Soc Am 108:137–145. https://doi.org/10.1093/aesa/sau048

  110. 110.

    Moran NA, Dale C, Dunbar H et al (2003) Intracellular symbionts of sharpshooters (Insecta: Hemiptera: Cicadellinae) form a distinct clade with a small genome. Environ Microbiol 5:116–126

  111. 111.

    Mitsuhashi W, Saiki T, Wei W, Kawakita H, Sato M (2002) Two novel strains of Wolbachia coexisting in both species of mulberry leafhoppers. Insect Mol Biol 11:577–584

  112. 112.

    Koga R, Bennett GM, Cryan JR, Moran NA (2013) Evolutionary replacement of obligate symbionts in an ancient and diverse insect lineage. Environ Microbiol 15:2073–2081. https://doi.org/10.1111/1462-2920.12121

  113. 113.

    Zabal-Aguirre M, Arroyo F, Bella JL (2010) Distribution of Wolbachia infection in Chorthippus parallelus populations within and beyond a Pyrenean hybrid zone. Heredity (Edinb) 104:174–184. https://doi.org/10.1038/hdy.2009.106

  114. 114.

    Duron O, Bouchon D, Boutin S et al (2008) The diversity of reproductive parasites among arthropods: Wolbachia do not walk alone. BMC Biol 6:27. https://doi.org/10.1186/1741-7007-6-27

  115. 115.

    Moreira L a, Iturbe-Ormaetxe I, Jeffery J a et al (2009) A Wolbachia symbiont in Aedes aegypti limits infection with dengue, Chikungunya, and Plasmodium. Cell 139:1268–1278. https://doi.org/10.1016/j.cell.2009.11.042

  116. 116.

    Rodriguero MS, Confalonieri VA, Guedes JVC, Lanteri AA (2010) Wolbachia infection in the tribe Naupactini (Coleoptera, Curculionidae): association between thelytokous parthenogenesis and infection status. Insect Mol Biol 19:631–640. https://doi.org/10.1111/j.1365-2583.2010.01018.x

  117. 117.

    Meyer JM, Hoy MA (2008) Molecular survey of endosymbionts in Florida populations of Diaphorina citri (Hemiptera: Psyllidae) and its parasitoids Tamarixia radiata (Hymenoptera: Eulophidae) and Diaphorencyrtus aligarhensis (Hymenoptera: Encyrtidae). Fla Entomol 91:294–304

  118. 118.

    Lindsey ARI, Bordenstein SR, Newton ILG, Rasgon JL (2016) Wolbachia pipientis should not be split into multiple species: A response to Ramírez-Puebla et al., “Species in Wolbachia? Proposal for the designation of ‘Candidatus Wolbachia bourtzisii’, ‘Candidatus Wolbachia onchocercicola’, ‘Candidatus Wolbachia blaxteri’, ‘Candidatus Wolbachia brugii’, ‘Candidatus Wolbachia taylori’, ‘Candidatus Wolbachia collembolicola’ and ‘Candidatus Wolbachia multihospitum’ for the different species within Wolbachia supergroups”. Syst Appl Microbiol 39:220–222

  119. 119.

    Flores HA, O’Neill SL (2018) Controlling vector-borne diseases by releasing modified mosquitoes. Nat Rev Microbiol 16:508–518

  120. 120.

    Brinker P, Fontaine MC, Beukeboom LW, Salles JF (2019) Host, symbionts, and the microbiome: the missing tripartite interaction. Trends Microbiol 27:480–488. https://doi.org/10.1016/j.tim.2019.02.002

Download references

Funding

We thank Václav Čermák (Central Institute for Supervising and Testing in Agriculture, Olomouc, Czech Republic) for his help to IM in acquiring the sample of Diaphorina cf. continua. This work was supported by the Japan Society for the Promotion of Science (https://www.jsps.go.jp) KAKENHI grant number 26292174 and research grants from Tatematsu Foundation and Nagase Science and Technology Foundation to AN. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Correspondence to Atsushi Nakabachi.

Additional information

The nucleotide sequence data are available in the DDBJ/EMBL/GenBank databases under the accession numbers DRR190968–DRR190970 (MiSeq output) and TAAA01000001–TAAA01000013 (dereplicated sequence variants).

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nakabachi, A., Malenovský, I., Gjonov, I. et al. 16S rRNA Sequencing Detected Profftella, Liberibacter, Wolbachia, and Diplorickettsia from Relatives of the Asian Citrus Psyllid. Microb Ecol (2020). https://doi.org/10.1007/s00248-020-01491-z

Download citation

Keywords

  • Diaphorina
  • Sternorrhyncha
  • Insect
  • Bacterial endosymbiont
  • Microbiome
  • Molecular phylogeny