Advertisement

Environment Shapes the Intra-species Diversity of Bacillus subtilis Isolates

  • Stefanic PoloncaEmail author
Environmental Microbiology

Abstract

Cosmopolitan bacteria are those that are found practically everywhere in the world. One of them is Bacillus subtilis, which can travel around the world through dust storms rising from various deserts. Upon landing, bacterial survival is determined by the ability to adjust to the heterogonous environments and bacteria isolated from extremely different environments, such as desert and riverbank soil, are expected to be less related due to the environmental pressure of each region. However, little is known about the influence of soil and habitat on B. subtilis evolution. Here, we show that desert and riverbank B. subtilis strains differ in genetic relatedness and physiological traits, such as biofilm morphology and utilisation of carbon sources. Desert strains showed more diversity at the genetic level and were able to utilise more carbon sources than riverbank strains which were highly genetically conserved. Biofilm morphologies of desert and riverbank strains generally segregated and both groups formed different morphology clusters despite the astonishing diversity observed among riverbank strains. We also show that relatedness of B. subtilis strains does not decrease with distance inside the same habitat, which, together with diversity data implies that the difference in environmental selection pressures plays a fundamental role in the evolution of this species.

Keywords

Bacillus Diversity Biofilm morphology Biolog Soil microscale 

Notes

Acknowledgements

We thank Anna Dragoš, Ines Mandić Mulec, and Mihael Spacapan for valuable discussions, Carlo Viti, Francesca Decorosi, and Enrico Tatti for help with Biolog data interpretation and Rok Kostanjsek for assistance with photography.

Funding Information

This work was supported by grants from the Slovenian Research Agency (ARRS): the Program Grant P4-0116, the Slovenia-USA collaboration grant bilateral ARRS project US/18-19-091, and ARRS projects: L4-9315, J4-9302, J4-8228.

Supplementary material

248_2019_1455_MOESM1_ESM.docx (56 kb)
ESM 1 (DOCX 55 kb)
248_2019_1455_MOESM2_ESM.xlsx (27 kb)
ESM 2 (XLSX 26 kb)

References

  1. 1.
    Fenchel T (2003) Microbiology. Biogeography for bacteria. Science 301(5635):925–926.  https://doi.org/10.1126/science.1089242 CrossRefPubMedGoogle Scholar
  2. 2.
    Griffin DW (2007) Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin Microbiol Rev 20(3):459–477, table of contents.  https://doi.org/10.1128/CMR.00039-06 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kellogg CA, Griffin DW (2006) Aerobiology and the global transport of desert dust. Trends Ecol Evol 21(11):638–644.  https://doi.org/10.1016/j.tree.2006.07.004 CrossRefPubMedGoogle Scholar
  4. 4.
    Setlow P (2001) Resistance of spores of Bacillus species to ultraviolet light. Environ Mol Mutagen 38(2–3):97–104.  https://doi.org/10.1002/em.1058 CrossRefPubMedGoogle Scholar
  5. 5.
    Shaffer BT, Lighthart B (1997) Survey of culturable airborne bacteria at four diverse locations in Oregon: urban, rural, forest, and coastal. Microb Ecol 34(3):167–177CrossRefGoogle Scholar
  6. 6.
    Kellogg CA, Griffin DW, Garrison VH, Peak KK, Royall N, Smith RR, Shinn EA (2004) Characterization of aerosolized bacteria and fungi from desert dust events in Mali, West Africa. Aerobiologia 20(2):99–110CrossRefGoogle Scholar
  7. 7.
    Griffin DW, Westphal DL, Gray MA (2006) Airborne microorganisms in the African desert dust corridor over the mid-Atlantic ridge, Ocean Drilling Program, Leg 209. Aerobiologia 22(3):211–226CrossRefGoogle Scholar
  8. 8.
    Baas Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. W.P. Van Stockum & Zoon (in Dutch) The Hague, the NetherlandsGoogle Scholar
  9. 9.
    De Wit R, Bouvier T (2006) ‘Everything is everywhere, but, the environment selects’; what did Baas Becking and Beijerinck really say? Environ Microbiol 8(4):755–758.  https://doi.org/10.1111/j.1462-2920.2006.01017.x CrossRefPubMedGoogle Scholar
  10. 10.
    Roberts MS, Cohan FM (1995) Recombination and migration rates in natural populations of Bacillus subtilis and Bacillus mojavensis. Evolution 49(6):1081–1094CrossRefGoogle Scholar
  11. 11.
    Garbeva P, van Veen JA, van Elsas JD (2003) Predominant Bacillus spp. in agricultural soil under different management regimes detected via PCR-DGGE. Microb. Ecol. 45:302–316CrossRefGoogle Scholar
  12. 12.
    Stefanic P, Mandic-Mulec I (2009) Social interactions and distribution of Bacillus subtilis pherotypes at microscale. J. Bacteriol. 191(6):1756–1764.  https://doi.org/10.1128/JB.01290-08 CrossRefPubMedGoogle Scholar
  13. 13.
    Stefanic P, Kraigher B, Lyons NA, Kolter R, Mandic-Mulec I (2015) Kin discrimination between sympatric Bacillus subtilis isolates. Proc. Natl. Acad. Sci. U. S. A. 112(45):14042–14047.  https://doi.org/10.1073/pnas.1512671112 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Stefanic P, Decorosi F, Viti C, Petito J, Cohan FM, Mandic-Mulec I (2012) The quorum sensing diversity within and between ecotypes of Bacillus subtilis. Environ Microbiol 14(6):1378–1389.  https://doi.org/10.1111/j.1462-2920.2012.02717.x CrossRefPubMedGoogle Scholar
  15. 15.
    Oda Y, Wanders W, Huisman LA, Meijer WG, Gottschal JC, Forney LJ (2002) Genotypic and phenotypic diversity within species of purple nonsulfur bacteria isolated from aquatic sediments. Appl. Environ. Microbiol. 68(7):3467–3477CrossRefGoogle Scholar
  16. 16.
    Oda Y, Star B, Huisman LA, Gottschal JC, Forney LJ (2003) Biogeography of the purple nonsulfur bacterium Rhodopseudomonas palustris. Appl Environ Microbiol 69(9):5186–5191CrossRefGoogle Scholar
  17. 17.
    Diniz-Filho JAF, de Campos Telles MP (2000) Spatial pattern and genetic diversity estimates are linked in stochastic models of population differentiation. Genet Mol Biol 23(3):541–544CrossRefGoogle Scholar
  18. 18.
    Grundmann GL (2004) Spatial scales of soil bacterial diversity - the size of a clone. FEMS Microbiol. Ecol. 48(2):119–127CrossRefGoogle Scholar
  19. 19.
    Vos M, Velicer GJ (2006) Genetic population structure of the soil bacterium Myxococcus xanthus at the centimeter scale. Appl. Environ. Microbiol. 72(5):3615–3625CrossRefGoogle Scholar
  20. 20.
    Vos M, Velicer GJ (2008) Natural variation of gliding motility in a centimetre-scale population of Myxococcus xanthus. FEMS Microbiol Ecol 64(3):343–350.  https://doi.org/10.1111/j.1574-6941.2008.00484.x CrossRefPubMedGoogle Scholar
  21. 21.
    Kraemer SA, Toups MA, Velicer GJ (2010) Natural variation in developmental life-history traits of the bacterium Myxococcus xanthus. FEMS Microbiol. Ecol. 73(2):226–233.  https://doi.org/10.1111/j.1574-6941.2010.00888.x CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Vogel J, Normand P, Thioulouse J, Nesme X, Grundmann GL (2003) Relationship between spatial and genetic distance in Agrobacterium spp. in 1 cubic centimeter of soil. Appl. Environ. Microbiol. 69(3):1482–1487CrossRefGoogle Scholar
  23. 23.
    Cho JC, Tiedje JM (2000) Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl. Environ. Microbiol. 66(12):5448–5456CrossRefGoogle Scholar
  24. 24.
    Martiny AC, Tai APK, Veneziano D, Primeau F, Chisholm SW (2009) Taxonomic resolution, ecotypes and the biogeography of Prochlorococcus. Environ Microbiol 11(4):823–832.  https://doi.org/10.1111/j.1462-2920.2008.01803.x CrossRefPubMedGoogle Scholar
  25. 25.
    Bhaya D, Grossman AR, Steunou AS, Khuri N, Cohan FM, Hamamura N, Melendrez MC, Bateson MM, Ward DM, Heidelberg JF (2007) Population level functional diversity in a microbial community revealed by comparative genomic and metagenomic analyses. ISME J 1(8):703–713.  https://doi.org/10.1038/ismej.2007.46 CrossRefPubMedGoogle Scholar
  26. 26.
    Raes J, Letunic I, Yamada T, Jensen LJ, Bork P (2011) Toward molecular trait-based ecology through integration of biogeochemical, geographical and metagenomic data. Mol Syst Biol 7:473.  https://doi.org/10.1038/msb.2011.6 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Leff JW, Jones SE, Prober SM, Barberan A, Borer ET, Firn JL, Harpole WS, Hobbie SE, Hofmockel KS, Knops JM, McCulley RL, La Pierre K, Risch AC, Seabloom EW, Schutz M, Steenbock C, Stevens CJ, Fierer N (2015) Consistent responses of soil microbial communities to elevated nutrient inputs in grasslands across the globe. Proc Natl Acad Sci U S A 112(35):10967–10972.  https://doi.org/10.1073/pnas.1508382112 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Chase AB, Gomez-Lunar Z, Lopez AE, Li J, Allison SD, Martiny AC, Martiny JBH (2018) Emergence of soil bacterial ecotypes along a climate gradient. Environ. Microbiol. 20(11):4112–4126.  https://doi.org/10.1111/1462-2920.14405 CrossRefPubMedGoogle Scholar
  29. 29.
    Chase AB, Martiny JBH (2018) The importance of resolving biogeographic patterns of microbial microdiversity. Microbiol Aust 39:5–8Google Scholar
  30. 30.
    Cohan FM, Roberts MS, King EC (1991) The potential for genetic exchange by transformation within a natural population of Bacillus subtilis. Evolution 45(6):1383–1421CrossRefGoogle Scholar
  31. 31.
    Tran PL-S, Nagai T, Itoh Y (2000) Divergent structure of the ComQXPA quorum-sensing components: molecular basis of strain-specific communication mechanism in Bacillus subtilis. Mol Microbiol 37(5):1159–1171CrossRefGoogle Scholar
  32. 32.
    Hall TA (1999) A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  33. 33.
    Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599CrossRefGoogle Scholar
  34. 34.
    Bochner BR, Gadzinski P, Panomitros E (2001) Phenotype microarrays for high-throughput phenotypic testing and assay of gene function. Genome Res 11(7):1246–1255CrossRefGoogle Scholar
  35. 35.
    Oslizlo A, Stefanic P, Vatovec S, Beigot Glaser S, Rupnik M, Mandic-Mulec I (2015) Exploring ComQXPA quorum-sensing diversity and biocontrol potential of Bacillus spp. isolates from tomato rhizoplane. Microb Biotechnol 8(3):527–540.  https://doi.org/10.1111/1751-7915.12258 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Konstantinidis KT, Tiedje JM (2004) Trends between gene content and genome size in prokaryotic species with larger genomes. Proc Natl Acad Sci U S A 101(9):3160–3165CrossRefGoogle Scholar
  37. 37.
    Konstantinidis KT, Ramette A, Tiedje JM (2006) The bacterial species definition in the genomic era. Philos Trans R Soc Lond Ser B Biol Sci 361(1475):1929–1940CrossRefGoogle Scholar
  38. 38.
    McArthur JV, Kovacic DA, Smith MH (1988) Genetic diversity in natural populations of a soil bacterium across a landscape gradient. Proc Natl Acad Sci 85(24):9621–9624CrossRefGoogle Scholar
  39. 39.
    Buckling A, Brockhurst MA, Travisano M, Rainey PB (2007) Experimental adaptation to high and low quality environments under different scales of temporal variation. J. Evol. Biol. 20(1):296–300CrossRefGoogle Scholar
  40. 40.
    Rainey PB, Travisano M (1998) Adaptive radiation in a heterogeneous environment. Nature 394(6688):69–72CrossRefGoogle Scholar
  41. 41.
    Sikorski J, Nevo E (2005) Adaptation and incipient sympatric speciation of Bacillus simplex under microclimatic contrast at “Evolution Canyons” I and II, Israel. Proc. Natl. Acad. Sci. 102(44):15924–15929CrossRefGoogle Scholar
  42. 42.
    Sikorski J, Nevo E (2007) Patterns of thermal adaptation of Bacillus simplex to the microclimatically contrasting slopes of ‘Evolution Canyons’ I and II, Israel. Environ. Microbiol. 9(3):716–726CrossRefGoogle Scholar
  43. 43.
    Feeser KL, Van Horn DJ, Buelow HN, Colman DR, McHugh TA, Okie JG, Schwartz E, Takacs-Vesbach CD (2018) Local and regional scale heterogeneity drive bacterial community diversity and composition in a polar desert. Front Microbiol 9:1928.  https://doi.org/10.3389/fmicb.2018.01928 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wang X, Van Nostrand JD, Deng Y, Lu X, Wang C, Zhou J, Han X (2015) Scale-dependent effects of climate and geographic distance on bacterial diversity patterns across northern China’s grasslands. FEMS Microbiol. Ecol. 91(12).  https://doi.org/10.1093/femsec/fiv133
  45. 45.
    Vos M, Velicer GJ (2008) Isolation by distance in the spore-forming soil bacterium Myxococcus xanthus. Curr Biol 18(5):386–391.  https://doi.org/10.1016/j.cub.2008.02.050 CrossRefPubMedGoogle Scholar
  46. 46.
    Bissett A, Richardson AE, Baker G, Wakelin S, Thrall PH (2010) Life history determines biogeographical patterns of soil bacterial communities over multiple spatial scales. Mol Ecol 19(19):4315–4327CrossRefGoogle Scholar
  47. 47.
    Boucher Y, Cordero OX, Takemura A, Hunt DE, Schliep K, Bapteste E, Lopez P, Tarr CL, Polz MF (2011) Local mobile gene pools rapidly cross species boundaries to create endemicity within global Vibrio cholerae populations. MBio 2(2).  https://doi.org/10.1128/mBio.00335-10
  48. 48.
    Johnson ZI, Zinser ER, Coe A, McNulty NP, Woodward EM, Chisholm SW (2006) Niche partitioning among Prochlorococcus ecotypes along ocean-scale environmental gradients. Science 311(5768):1737–1740.  https://doi.org/10.1126/science.1118052 CrossRefPubMedGoogle Scholar
  49. 49.
    Nevo E (2011) Evolution under environmental stress at macro- and microscales. Genome Biol Evol 3:1039–1052.  https://doi.org/10.1093/gbe/evr052 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Stearns SC (1994) Hoffman, A. A. and Parsons, P. A. 1991. Evolutionary genetics and environmental stress. Oxford University Press. paper .ix + 284 pp., illus. ISBN: 0-19-854081-7. J Evol Biol 7(5):634–635.  https://doi.org/10.1046/j.1420-9101.1994.7050634.x CrossRefGoogle Scholar
  51. 51.
    Nevo E (2009) Evolution in action across life at “Evolution Canyons”, Israel. Trends Evol Biol 1(1).  https://doi.org/10.4081/eb.2009.e3 CrossRefGoogle Scholar
  52. 52.
    Nevo E (2006) “Evolution Canyon”: a microcosm of life’s evolution focusing on adaptation and speciation. Israel J Ecol Evol 52(3–4)CrossRefGoogle Scholar
  53. 53.
    Brito PH, Chevreux B, Serra CR, Schyns G, Henriques AO, Pereira-Leal JB (2018) Genetic competence drives genome diversity in Bacillus subtilis. Genome Biol Evol 10(1):108–124.  https://doi.org/10.1093/gbe/evx270 CrossRefPubMedGoogle Scholar
  54. 54.
    Larkin AA, Martiny AC (2017) Microdiversity shapes the traits, niche space, and biogeography of microbial taxa. Environ Microbiol Rep 9(2):55–70.  https://doi.org/10.1111/1758-2229.12523 CrossRefGoogle Scholar
  55. 55.
    Frese SA, Benson AK, Tannock GW, Loach DM, Kim J, Zhang M, Oh PL, Heng NC, Patil PB, Juge N, Mackenzie DA, Pearson BM, Lapidus A, Dalin E, Tice H, Goltsman E, Land M, Hauser L, Ivanova N, Kyrpides NC, Walter J (2011) The evolution of host specialization in the vertebrate gut symbiont Lactobacillus reuteri. PLoS Genet 7(2):e1001314.  https://doi.org/10.1371/journal.pgen.1001314 CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Martiny AC, Huang Y, Li W (2009) Occurrence of phosphate acquisition genes in Prochlorococcus cells from different ocean regions. Environ. Microbiol. 11(6):1340–1347.  https://doi.org/10.1111/j.1462-2920.2009.01860.x CrossRefPubMedGoogle Scholar
  57. 57.
    Tenaillon O, Rodriguez-Verdugo A, Gaut RL, McDonald P, Bennett AF, Long AD, Gaut BS (2012) The molecular diversity of adaptive convergence. Science 335(6067):457–461.  https://doi.org/10.1126/science.1212986 CrossRefPubMedGoogle Scholar
  58. 58.
    Shapiro BJ, Friedman J, Cordero OX, Preheim SP, Timberlake SC, Szabo G, Polz MF, Alm EJ (2012) Population genomics of early events in the ecological differentiation of bacteria. Science 336(6077):48–51.  https://doi.org/10.1126/science.1218198 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Rozen DE, Lenski RE (2000) Long-term experimental evolution in Escherichia coli. VIII. Dynamics of a balanced polymorphism. Am Nat 155(1):24–35CrossRefGoogle Scholar
  60. 60.
    Dutta C, Pan A (2002) Horizontal gene transfer and bacterial diversity. J Biosci 27(1 Suppl 1):27–33CrossRefGoogle Scholar
  61. 61.
    Ochman H, Lawrence JG, Groisman EA (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405(6784):299–304CrossRefGoogle Scholar
  62. 62.
    McLoon AL, Guttenplan SB, Kearns DB, Kolter R, Losick R (2011) Tracing the domestication of a biofilm-forming bacterium. J. Bacteriol. 193(8):2027–2034.  https://doi.org/10.1128/JB.01542-10 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Gilbert P, Das J, Foley I (1997) Biofilm susceptibility to antimicrobials. Adv Dent Res 11(1):160–167.  https://doi.org/10.1177/08959374970110010701 CrossRefPubMedGoogle Scholar
  64. 64.
    Moons P, Michiels CW, Aertsen A (2009) Bacterial interactions in biofilms. Crit Rev Microbiol 35(3):157–168.  https://doi.org/10.1080/10408410902809431 CrossRefPubMedGoogle Scholar
  65. 65.
    Dragos A, Lakshmanan N, Martin M, Horvath B, Maroti G, Falcon Garcia C, Lieleg O, Kovacs AT (2017) Evolution of exploitative interactions during diversification in Bacillus subtilis biofilms. FEMS Microbiol. Ecol. 93(12).  https://doi.org/10.1093/femsec/fix155
  66. 66.
    Veening JW, Kuipers OP, Brul S, Hellingwerf KJ, Kort R (2006) Effects of phosphorelay perturbations on architecture, sporulation, and spore resistance in biofilms of Bacillus subtilis. J. Bacteriol. 188(8):3099–3109CrossRefGoogle Scholar
  67. 67.
    Stanley NR, Lazazzera BA (2005) Defining the genetic differences between wild and domestic strains of Bacillus subtilis that affect poly-gamma-dl-glutamic acid production and biofilm formation. Mol. Microbiol. 57(4):1143–1158CrossRefGoogle Scholar
  68. 68.
    Lombardia E, Rovetto AJ, Arabolaza AL, Grau RR (2006) A LuxS-dependent cell-to-cell language regulates social behavior and development in Bacillus subtilis. J. Bacteriol. 188(12):4442–4452CrossRefGoogle Scholar
  69. 69.
    Feldgarden M, Byrd N, Cohan FM (2003) Gradual evolution in bacteria: evidence from Bacillus systematics. Microbiology 149:3565–3573CrossRefGoogle Scholar
  70. 70.
    Jin DJ, Gross CA (1988) Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J Mol Biol 202(1):45–58CrossRefGoogle Scholar
  71. 71.
    Perkins AE, Nicholson WL (2008) Uncovering new metabolic capabilities of Bacillus subtilis using phenotype profiling of rifampin-resistant rpoB mutants. J Bacteriol 190(3):807–814.  https://doi.org/10.1128/JB.00901-07 CrossRefPubMedGoogle Scholar
  72. 72.
    Chase AB, Karaoz U, Brodie EL, Gomez-Lunar Z, Martiny AC, Martiny JBH (2017) Microdiversity of an abundant terrestrial bacterium encompasses extensive variation in ecologically relevant traits. MBio 8(6).  https://doi.org/10.1128/mBio.01809-17

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Biotechnical FacultyUniversity of LjubljanaLjubljanaSlovenia

Personalised recommendations