Advertisement

Inorganic and Organic Carbon Uptake Processes and Their Connection to Microbial Diversity in Meso- and Bathypelagic Arctic Waters (Eastern Fram Strait)

  • Grazia Marina Quero
  • Mauro CelussiEmail author
  • Federica Relitti
  • Vedrana Kovačević
  • Paola Del Negro
  • Gian Marco Luna
Microbiology of Aquatic Systems

Abstract

The deep Arctic Ocean is increasingly vulnerable to climate change effects, yet our understanding of its microbial processes is limited. We collected samples from shelf waters, mesopelagic Atlantic Waters (AW) and bathypelagic Norwegian Sea Deep Waters (NSDW) in the eastern Fram Strait, along coast-to-offshore transects off Svalbard during boreal summer. We measured community respiration, heterotrophic carbon production (HCP), and dissolved inorganic carbon utilization (DICu) together with prokaryotic abundance, diversity, and metagenomic predictions. In deep samples, HCP was significantly faster in AW than in NSDW, while we observed no differences in DICu rates. Organic carbon uptake was higher than its inorganic counterpart, suggesting a major reliance of deep microbial Arctic communities on heterotrophic metabolism. Community structure and spatial distribution followed the hydrography of water masses. Distinct from other oceans, the most abundant OTU in our deep samples was represented by the archaeal MG-II. To address the potential biogeochemical role of each water mass-specific microbial community, as well as their link with the measured rates, PICRUSt-based predicted metagenomes were built. The results showed that pathways of auto- and heterotrophic carbon utilization differed between the deep water masses, although this was not reflected in measured DICu rates. Our findings provide new insights to understand microbial processes and diversity in the dark Arctic Ocean and to progress toward a better comprehension of the biogeochemical cycles and their trends in light of climate changes.

Keywords

Arctic Ocean Deep-sea microbial communities Carbon cycling Prokaryotic diversity 

Notes

Acknowledgments

Sampling was carried out during the PREPARED (Present and past flow regime on contourite drifts west of Spitsbergen) cruise in the framework of the EU Seventh Framework Programme (FP7/2007-2013) EUROFLEETS2 project. Financial aid from the project DEEPROSSS (Funded by the National Antarctic Research Program of Italy, PNRA) and the National Flagship Program RITMARE is also acknowledged. We thank the chief scientist of the cruise R.G. Lucchi, M. Kralj for nutrient data, N. Lucchini for the microscope analysis, and G. Ingrosso for DIC data and for his precious work onboard. The constructive comments of two anonymous reviewers helped to improve the manuscript during the revision stage.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no competing interests.

Supplementary material

248_2019_1451_MOESM1_ESM.docx (835 kb)
ESM 1 (DOCX 834 kb)

References

  1. 1.
    DeLong EF, Preston CM, Mincer T, Rich V, Hallam SJ, Frigaard NU, Martinez A, Sullivan MB, Edwards R, Brito BR, Chisholm SW, Karl DM (2006) Community genomics among stratified microbial assemblages in the ocean’s interior. Science 311:496–503PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Buesseler KO, Lamborg CH, Boyd PW, Lam PJ, Trull TW, Bidigare RR, Bishop JK, Casciotti KL, Dehairs F, Elskens M, Honda M, Karl DM, Siegel DA, Silver MW, Steinberg DK, Valdes J, van Mooy B, Wilson S (2007) Revisiting carbon flux through the ocean’s twilight zone. Science 316:567–570PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Swan BK, Martinez-Garcia M, Preston CM, Sczyrba A, Woyke T, Lamy D, Reinthaler T, Poulton NJ, Masland ED, Gomez ML, Sieracki ME, DeLong E, Herndl GJ, Stepanauskas R (2011) Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333:1296–1300PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Karl DM (2007) Microbial oceanography: paradigms, processes and promise. Nat Rev Microbiol 5:759–769PubMedCrossRefPubMedCentralGoogle Scholar
  5. 5.
    Mende DR, Bryant JA, Aylward FO, Eppley JM, Nielsen T, Karl DM, DeLong EF (2017) Environmental drivers of a microbial genomic transition zone in the ocean’s interior. Nat Microbiol 2:1367–1373PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Burd AB, Hansell DA, Steinberg DK, Anderson TR, Arístegui J, Baltar F, Beaupré SR, Buesseler KO, DeHairs F, Jackson GA, Kadko DC, Koppelmann R, Lampitt RS, Nagata T, Reinthaler T, Robinson C, Robison BH, Tamburini C, Tanaka T (2010) Assessing the apparent imbalance between geochemical and biochemical indicators of meso- and bathypelagic biological activity: what the @$#! is wrong with present calculations of carbon budgets? Deep Sea Res II 57:1557–1571CrossRefGoogle Scholar
  7. 7.
    Herndl GJ, Reinthaler T (2013) Microbial control of the dark end of the biological pump. Nat Geosci 6:718–724PubMedPubMedCentralCrossRefGoogle Scholar
  8. 8.
    Herndl GJ, Reinthaler T, Teira E, van Aken H, Veth C, Pernthaler A, Pernthaler J (2005) Contribution of Archaea to total prokaryotic production in the deep Atlantic Ocean. Appl Environ Microbiol 71:2303–2309PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Tamburini C, Garel M, Al Ali B, Mérigot B, Kriwy P, Charrière B, Budillon G (2009) Distribution and activity of Bacteria and Archaea in the different water masses of the Tyrrhenian Sea. Deep Sea Res II 56:700–712CrossRefGoogle Scholar
  10. 10.
    Reinthaler T, van Aken HM, Herndl GJ (2010) Major contribution of autotrophy to microbial carbon cycling in the deep North Atlantic’s interior. Deep Sea Res II 57:1572–1580CrossRefGoogle Scholar
  11. 11.
    Baltar F, Lundin D, Palovaara J, Lekunberri I, Reinthaler T, Herndl GJ, Pinhassi J (2016) Prokaryotic responses to ammonium and organic carbon reveal alternative CO2 fixation pathways and importance of alkaline phosphatase in the mesopelagic North Atlantic. Front Microbiol 7:1670PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Pachiadaki MG, Sintes E, Bergauer K, Brown JM, Record NR, Swan BK, Mathyer ME, Hallam SJ, Lopez-Garcia P, Takaki Y, Nunoura T, Woyke T, Herndl GJ, Stepanauskas R (2017) Major role of nitrite-oxidizing bacteria in dark ocean carbon fixation. Science 358:1046–1051PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Celussi M, Malfatti F, Ziveri P, Giani M, Del Negro P (2017) Uptake-release dynamics of the inorganic and organic carbon pool mediated by planktonic prokaryotes in the deep Mediterranean Sea. Environ Microbiol. 19:1163–1175PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    La Cono V, Ruggeri G, Azzaro M, Crisafi F, Decembrini F, Denaro R et al (2018) Contribution of bicarbonate assimilation to carbon pool dynamics in the deep Mediterranean Sea and cultivation of actively nitrifying and CO2-fixing bathypelagic prokaryotic consortia. Front Microbiol. 9:3PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    Guerrero-Feijóo E, Sintes E, Herndl GJ, Varela MM (2018) High dark inorganic carbon fixation rates by specific microbial groups in the Atlantic off the Galician coast (NW Iberian margin). Environ Microbiol. 20:602–611PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Alonso-Sáez L, Galand PE, Casamayor EO, Pedrós-Alió C, Bertilsson S (2010) High bicarbonate assimilation in the dark by Arctic bacteria. ISME J 4:1581–1590PubMedCrossRefPubMedCentralGoogle Scholar
  17. 17.
    Kirchman DL, Elifantz H, Dittel AI, Malmstrom RR, Cottrell MT (2007) Standing stocks and activity of Archaea and Bacteria in the western Arctic Ocean. Limnol Oceanogr. 52:495–507CrossRefGoogle Scholar
  18. 18.
    Kirchman DL, Hill V, Cottrell MT, Gradinger R, Malmstrom RR, Parker A (2009) Standing stocks, production, and respiration of phytoplankton and heterotrophic bacteria in the western Arctic Ocean. Deep Sea Res II 56:1237–1248CrossRefGoogle Scholar
  19. 19.
    Kirchman DL, Cottrell MT, Lovejoy C (2010) The structure of bacterial communities in the western Arctic Ocean as revealed by pyrosequencing of 16S rRNA genes. Environ Microbiol. 12:1132–1143PubMedCrossRefPubMedCentralGoogle Scholar
  20. 20.
    Sala MM, Arrieta JM, Boras JA, Duarte CM, Vaqué D (2010) The impact of ice melting on bacterioplankton in the Arctic Ocean. Polar Biol. 33:1683–1694CrossRefGoogle Scholar
  21. 21.
    Iversen KR, Seuthe L (2011) Seasonal microbial processes in a high-latitude fjord (Kongsfjorden, Svalbard): I. Heterotrophic bacteria, picoplankton and nanoflagellates. Polar Biol. 34:731–749CrossRefGoogle Scholar
  22. 22.
    Boeuf D, Humily F, Jeanthon C (2014) Diversity of Arctic pelagic Bacteria with an emphasis on photoheterotrophs: a review. Biogeoscience 11:3309–3322CrossRefGoogle Scholar
  23. 23.
    Maranger R, Vaqué D, Nguyen D, Hébert MP, Lara E (2015) Pan-Arctic patterns of planktonic heterotrophic microbial abundance and processes: controlling factors and potential impacts of warming. Progr Oceanogr 139:221–232CrossRefGoogle Scholar
  24. 24.
    Pedrós-Alió C, Potvin M, Lovejoy C (2015) Diversity of planktonic microorganisms in the Arctic Ocean. Prog Oceanogr. 139:233–243CrossRefGoogle Scholar
  25. 25.
    Fadeev E, Salter I, Schourup-Kristensen V, Nöthig EM, Metfies K, Engel A et al (2018) Microbial communities in the east and west Fram Strait during sea-ice melting season. Front Mar Sci. 5:429CrossRefGoogle Scholar
  26. 26.
    Rapp JZ, Fernández-Méndez M, Bienhold C, Boetius A (2018) Effects of ice-algal aggregate export on the connectivity of bacterial communities in the central Arctic Ocean. Front Microbiol. 9Google Scholar
  27. 27.
    Galand PE, Potvin M, Casamayor EO, Lovejoy C (2010) Hydrography shapes bacterial biogeography of the deep Arctic Ocean. ISME J 4:564–576PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Wilson B, Müller O, Nordmann EL, Seuthe L, Bratbak G, Øvreås L (2017) Changes in marine prokaryote composition with season and depth over an arctic polar year. Front Mar Sci. 4:95Google Scholar
  29. 29.
    Galand PE, Casamayor EO, Kirchman DL, Potvin M, Lovejoy C (2009) Unique archaeal assemblages in the Arctic Ocean unveiled by massively parallel tag sequencing. ISME J 3:860–869PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Müller O, Wilson B, Paulsen ML, Ruminska A, Armo HR, Bratbak G, Øvreås L (2018) Spatiotemporal dynamics of ammonia-oxidizing Thaumarchaeota in distinct Arctic water masses. Front Microbiol. 9:24PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Alonso-Sáez L, Zeder M, Harding T, Pernthaler J, Lovejoy C, Bertilsson S, Pedrós-Alió C (2014) Winter bloom of a rare betaproteobacterium in the Arctic Ocean. Front Microbiol. 5:425PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    Screen JA, Francis JA (2016) Contribution of sea-ice loss to Arctic amplification is regulated by Pacific Ocean decadal variability. Nat Clim Chang. 6:856–860CrossRefGoogle Scholar
  33. 33.
    Aksenov Y, Bacon S, Coward AC, Nurser AG (2010) The North Atlantic inflow to the Arctic Ocean: high-resolution model study. J Mar Syst. 79:1–22CrossRefGoogle Scholar
  34. 34.
    Smedsrud LH, Esau I, Ingvaldsen RB, Eldevik T, Haugan PM, Li C et al (2013) The role of the Barents Sea in the Arctic climate system. Rev Geophys. 51:415–449CrossRefGoogle Scholar
  35. 35.
    Schlitzer R (2014) Ocean Data View, http://odv.awi.de Accessed 10 Apr 2016
  36. 36.
    Hansen HP, Koroleff F (1999) Determination of nutrients. In: Grasshoff K, Kremling K, Ehrhardt M (eds) Methods of seawater analysis3rd edn. Wiley-VCH, Weinheim, pp 159–228CrossRefGoogle Scholar
  37. 37.
    Nieuwenhuize J, Maas YEM, Middelburg JJ (1994) Rapid analysis of organic carbon and nitrogen in particulate materials. Mar Chem. 45:217–224CrossRefGoogle Scholar
  38. 38.
    Pella E, Colombo B (1973) Study of carbon, hydrogen and nitrogen determination by combustion-gas chromatography. Microchim Acta 5:697–719CrossRefGoogle Scholar
  39. 39.
    Sharp JH (1974) Improved analysis for “particulate” organic carbon and nitrogen from seawater. Limnol Oceanogr. 19:984–989CrossRefGoogle Scholar
  40. 40.
    Miller JN, Miller JC (2005) Statistics and chemometrics for analytical chemistry5th edn. Pearson/Prentice Hall, HarlowGoogle Scholar
  41. 41.
    Porter KG, Feig YS (1980) The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr. 25:943–948CrossRefGoogle Scholar
  42. 42.
    Celussi M, Malfatti F, Franzo A, Gazeau F, Giannakourou A, Pitta P et al (2017) Ocean acidification effect on prokaryotic metabolism tested in two diverse trophic regimes in the Mediterranean Sea. Estuar Coast Shelf Sci. 186:125–138CrossRefGoogle Scholar
  43. 43.
    Kirchman DL, K’nees E, Hodson R (1985) Leucine incorporation and its potential as a measure of protein synthesis by bacteria in natural aquatic systems. Appl Environ Microbiol. 49:599–607PubMedPubMedCentralGoogle Scholar
  44. 44.
    Luna GM, Bianchelli S, Decembrini F, De Domenico E, Danovaro R, Dell’Anno A (2012) The dark portion of the Mediterranean Sea is a bioreactor of organic matter cycling. Glob Biogeochem Cycles 26:GB2017CrossRefGoogle Scholar
  45. 45.
    Smith DC, Azam F (1992) A simple, economical method for measuring bacterial protein synthesis rates in seawater using 3H-leucine. Mar Microb Food Webs 6:107–114Google Scholar
  46. 46.
    Kirchman DL, Ducklow HW (1993) Estimating conversion factors for the thymidine and leucine methods for measuring bacterial production. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Handbook of methods in aquatic microbial ecology. Lewis Publications, pp 513–517Google Scholar
  47. 47.
    Packard TT, Williams PJB (1981) Rates of respiratory oxygen-consumption and electron-transport in surface seawater from the northwest Atlantic. Oceanol Acta 4:351–358Google Scholar
  48. 48.
    Reinthaler T, Van Aken H, Veth C, Arístegui J, Robinson C, Williams PJB, Lebaron P, Herndl GJ (2006) Prokaryotic respiration and production in the meso- and bathypelagic realm of the eastern and western North Atlantic basin. Limnol Oceanogr. 51:1262–1273CrossRefGoogle Scholar
  49. 49.
    Yakimov MM, La Cono V, Smedile F, DeLuca TH, Juárez S, Ciordia S et al (2011) Contribution of crenarchaeal autotrophic ammonia oxidizers to the dark primary production in Tyrrhenian deep waters (Central Mediterranean Sea). ISME J 5:945–961PubMedPubMedCentralCrossRefGoogle Scholar
  50. 50.
    Steeman Nielsen E (1952) The use of radioactive 14C for measuring organic production in the sea. J Cons Int Explor Mer 18:117–140CrossRefGoogle Scholar
  51. 51.
    Quero GM, Perini L, Pesole G, Manzari C, Lionetti C, Bastianini M, Marini M, Luna GM (2017) Seasonal rather than spatial variability drives planktonic and benthic bacterial diversity in a microtidal lagoon and the adjacent open sea. Mol Ecol. 26:5961–5973PubMedCrossRefPubMedCentralGoogle Scholar
  52. 52.
    Eiler A, Heinrich F, Bertilsson S (2012) Coherent dynamics and association networks among lake bacterioplankton taxa. ISME J 6:330–342PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M et al (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res. 41:e1CrossRefGoogle Scholar
  54. 54.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461PubMedPubMedCentralCrossRefGoogle Scholar
  56. 56.
    DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen GL (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol. 72:5069–5072PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol. 31:814–823PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Baltar F, Arístegui J, Sintes E, Van Aken HM, Gasol JM, Herndl GJ (2009) Prokaryotic extracellular enzymatic activity in relation to biomass production and respiration in the meso- and bathypelagic waters of the (sub)tropical Atlantic. Environ Microbiol. 11:1998–2014PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Celussi M, Del Negro P (2012) Microbial degradation at a shallow coastal site: long-term spectra and rates of exoenzymatic activities in the NE Adriatic Sea. Estuar Coast Shelf Sci. 115:75–86CrossRefGoogle Scholar
  60. 60.
    Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Langehaug HR, Falck E (2012) Changes in the properties and distribution of the intermediate and deep waters in the Fram Strait. Prog Oceanogr. 96:57–76CrossRefGoogle Scholar
  62. 62.
    Celussi M, Quero GM, Zoccarato L, Franzo A, Corinaldesi C, Rastelli E et al (2018) Planktonic prokaryote and protist communities in a submarine canyon system in the Ligurian Sea (NW Mediterranean). Prog Oceanogr. 168:210–221CrossRefGoogle Scholar
  63. 63.
    Severin T, Sauret C, Boutrif M, Duhaut T, Kessouri F, Oriol L, Caparros J, Pujo-Pay M, Durrieu de Madron X, Garel M, Tamburini C, Conan P, Ghiglione JF (2016) Impact of an intense water column mixing (0–1500 m) on prokaryotic diversity and activities during an open-ocean convection event in the NW Mediterranean Sea. Environ Microbiol. 18:4378–4390PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Mestre M, Borrull E, Sala MM, Gasol JM (2017) Patterns of bacterial diversity in the marine planktonic particulate matter continuum. ISME J 11:999–1010PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Frank AH, Garcia JA, Herndl GJ, Reinthaler T (2016) Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water. Environ Microbiol. 18:2052–2063PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Agogué H, Lamy D, Neal PR, Sogin ML, Herndl GJ (2011) Water mass-specificity of bacterial communities in the North Atlantic revealed by massively parallel sequencing. Mol Ecol. 20:258–274PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Polyakov IV, Pnyushkov AV, Alkire MB, Ashik IM, Baumann TM, Carmack EC et al (2017) Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science 356:285–291PubMedCrossRefPubMedCentralGoogle Scholar
  68. 68.
    Salazar G, Cornejo-Castillo FM, Benítez-Barrios V, Fraile-Nuez E, Álvarez-Salgado XA, Duarte CM et al (2016) Global diversity and biogeography of deep-sea pelagic prokaryotes. ISME J 10:596PubMedPubMedCentralCrossRefGoogle Scholar
  69. 69.
    Sheik CS, Jain S, Dick GJ (2014) Metabolic flexibility of enigmatic SAR324 revealed through metagenomics and metatranscriptomics. Environ Microbiol. 16:304–317PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Zhang CL, Xie W, Martín-Cuadrado AB, Rodriguez-Valera F (2015) Marine Group II Archaea, potentially important players in the global ocean carbon cycle. Front Microbiol. 6:1108PubMedPubMedCentralGoogle Scholar
  71. 71.
    Bano N, Ruffin S, Ransom B, Hollibaugh JT (2004) Phylogenetic composition of Arctic Ocean Archaeal assemblages and comparison with Antarctic assemblages. Appl Environ Microbiol. 70:781–789PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.
    Galand PE, Lovejoy C, Vincent WF (2006) Remarkably diverse and contrasting archaeal communities in a large arctic river and the coastal Arctic Ocean. Aquat Microb Ecol. 44:115–126CrossRefGoogle Scholar
  73. 73.
    Deschamps P, Zivanovic Y, Moreira D, Rodriguez-Valera F, López-García P (2014) Pangenome evidence for extensive interdomain horizontal transfer affecting lineage core and shell genes in uncultured planktonic thaumarchaeota and euryarchaeota. Genome Biol Evol 6:1549–1563PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Baker BJ, Sheik CS, Taylor CA, Jain S, Bhasi A, Cavalcoli JD, Dick GJ (2013) Community transcriptomic assembly reveals microbes that contribute to deep-sea carbon and nitrogen cycling. ISME J 7:1962–1973PubMedPubMedCentralCrossRefGoogle Scholar
  75. 75.
    Martín-Cuadrado AB, López-García P, Alba JC, Moreira D, Monticelli L, Strittmatter A et al (2007) Metagenomics of the deep Mediterranean, a warm bathypelagic habitat. PLoS One 2:e914PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Ward CS, Yung CM, Davis KM, Blinebry SK, Williams TC, Johnson ZI, Hunt DE (2017) Annual community patterns are driven by seasonal switching between closely related marine bacteria. ISME J 11:1412–1422PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Baltar F, Arístegui J, Sintes E, Gasol JM, Reinthaler T, Herndl GJ (2010) Significance of non-sinking particulate organic carbon and dark CO2 fixation to heterotrophic carbon demand in the mesopelagic northeast Atlantic. Geophys Res Lett. 37:L09602CrossRefGoogle Scholar
  78. 78.
    Manganelli M, Malfatti F, Samo TJ, Mitchell BG, Wang H, Azam F (2009) Major role of microbes in carbon fluxes during austral winter in the southern Drake Passage. PLoS One 4:e6941PubMedPubMedCentralCrossRefGoogle Scholar
  79. 79.
    Hansell DA, Carlson CA, Repeta DJ, Schlitzer R (2009) Dissolved organic matter in the ocean. A controversy stimulates new insights. Oceanography 22:202–211CrossRefGoogle Scholar
  80. 80.
    Konstantinidis KT, Braff J, Karl DM, DeLong EF (2009) Comparative metagenomic analysis of a microbial community residing at a depth of 4,000 meters at station ALOHA in the North Pacific subtropical gyre. Appl Environ Microbiol. 75:5345–5355PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Forest A, Sampei M, Makabe R, Sasaki H, Barberm DG, Gratton Y, Wassmann P, Fortier L (2008) The annual cycle of particulate organic carbon export in Franklin Bay (Canadian Arctic): environmental control and food web implications. J Geophys Res C Oceans 113:C03S05Google Scholar
  82. 82.
    Ghiglione JF, Galand PE, Pommier T, Pedrós-Alió C, Maas EW, Bakker K, Bertilson S, Kirchmanj DL, Lovejoy C, Yager PL, Murray AE (2012) Pole-to-pole biogeography of surface and deep marine bacterial communities. Proc Natl Acad Sci U S A. 109:17633–17638PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Cao H, Dong C, Bougouffa S, Li J, Zhang W, Shao Z, Bajic VB, Quian P-Y (2016) Delta-proteobacterial SAR324 group in hydrothermal plumes on the South Mid-Atlantic Ridge. Sci Rep. 6:22842PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Frigaard NU, Martinez A, Mincer TJ, DeLong EF (2006) Proteorhodopsin lateral gene transfer between marine planktonic Bacteria and Archaea. Nature 439:847–850PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Hawley AK, Brewer HM, Norbeck AD, Paša-Tolić L, Hallam SJ (2014) Metaproteomics reveals differential modes of metabolic coupling among ubiquitous oxygen minimum zone microbes. Proc Natl Acad Sci U S A. 111:11395–11400PubMedPubMedCentralCrossRefGoogle Scholar
  86. 86.
    King GM, Weber CF (2007) Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nat Rev Microbiol 5:107–118PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Landry Z, Swan BK, Herndl GJ, Stepanauskas R, Giovannoni SJ (2017) SAR202 genomes from the dark ocean predict pathways for the oxidation of recalcitrant dissolved organic matter. MBio 8:e00413–e00417PubMedPubMedCentralCrossRefGoogle Scholar
  88. 88.
    Yakimov MM, La Cono V, Smedile F, Crisafi F, Arcadi E, Leonardi M et al (2014) Heterotrophic bicarbonate assimilation is the main process of de novo organic carbon synthesis in hadal zone of the Hellenic Trench, the deepest part of Mediterranean Sea. Environ Microbiol Rep. 6:709–722PubMedCrossRefPubMedCentralGoogle Scholar
  89. 89.
    Lawler SN, Kellogg CA, France SC, Clostio RW, Brooke SD, Ross SW (2016) Coral-associated bacterial diversity is conserved across two deep-sea Anthothela species. Front Microbiol. 7:458PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Stazione Zoologica Anton DohrnIntegrative Marine Ecology DepartmentNapoliItaly
  2. 2.Oceanography DivisionIstituto Nazionale di Oceanografia e di Geofisica Sperimentale – OGSTriesteItaly
  3. 3.Istituto per le Risorse Biologiche e le Biotecnologie Marine (CNR-IRBIM)Consiglio Nazionale delle RicercheAnconaItaly
  4. 4.Istituto per le Risorse Biologiche e le Biotecnologie Marine (CNR-IRBIM)Consiglio Nazionale delle RicercheAnconaItaly

Personalised recommendations