Advertisement

Responses of Rhizospheric Microbial Communities of Native and Alien Plant Species to Cuscuta Parasitism

  • Caroline Brunel
  • Yang Beifen
  • Robin Pouteau
  • Junmin LiEmail author
  • Mark van Kleunen
Plant Microbe Interactions

Abstract

Parasitic plants have major impacts on host fitness. In the case of species of the holoparasitic Cuscuta genus, these impacts were shown to be particularly strong in some invasive alien plants, which has raised interest in the underlying mechanism. We hypothesized that Cuscuta parasitization may exert strong influence in shaping the diversity patterns in the host rhizosphere microbiome and that this may vary between native (coevolved) and alien (non-coevolved) plants. Here, we report on a field study exploring the effect of parasitization by Cuscuta australis on the rhizosphere microbiota (16S and ITS rDNA) of four plant species sharing and three plant species not sharing the parasite’s native range. Despite a predominant role of the host species in shaping the rhizosphere microbiota, the role of host origin and of parasitization still appeared important in structuring microbial communities and their associated functions. Bacterial communities were more strongly influenced than fungi by the native range of the host plant, while fungi were slightly more affected than bacteria by parasitization. About 7% of bacterial phylotypes and 11% of fungal phylotypes were sensitive to Cuscuta parasitization. Parasitization also reduced the abundance of arbuscular mycorrhizal fungi by ca. 18% and of several genes related to plant growth promoting functions (e.g., nitrogen metabolism and quorum sensing). Both fungi and bacteria differentially responded to host parasitization depending on host origin, and the extent of these shifts suggests that they may have more dramatic consequences for alien than for native plants.

Keywords

Plant-stem parasite Rhizosphere Invasive and native plant species Structure and composition of microbial communities 

Notes

Funding Information

This project has been realized with the financial support of the Chinese National Key Research and Development Program (No. 2016YFC1201100), the Inter-governmental S&T Cooperation Proposal between Bulgaria and China (No. 15-2), and the National Natural Science Foundation of China (No. 30800133).

Supplementary material

248_2019_1438_MOESM1_ESM.pdf (490 kb)
ESM 1 (PDF 490 kb)

References

  1. 1.
    Press MC, Phoenix GK (2005) Impacts of parasitic plants on natural communities. New Phytol 166:737–751.  https://doi.org/10.1111/j.1469-8137.2005.01358.x CrossRefPubMedGoogle Scholar
  2. 2.
    Yoshida S, Cui S, Ichihashi Y, Shirasu K (2016) The haustorium, a specialized invasive organ in parasitic plants. Annu Rev Plant Biol 67:643–667CrossRefGoogle Scholar
  3. 3.
    Bardgett RD, Smith RS, Shiel RS, Peacock S, Simkin JM, Quirk H, Hobbs PJ (2006) Parasitic plants indirectly regulate below-ground properties in grassland ecosystems. Nature 439:969–972CrossRefGoogle Scholar
  4. 4.
    Gressel J, Hanafi A, Head G, Marasas W, Obilana AB, Ochanda J, Souissi T, Tzotzos G (2004) Major heretofore intractable biotic constraints to African food security that may be amenable to novel biotechnological solutions. Crop Prot 23:661–689.  https://doi.org/10.1016/j.cropro.2003.11.014 CrossRefGoogle Scholar
  5. 5.
    Yoder JI, Scholes JD (2010) Host plant resistance to parasitic weeds; recent progress and bottlenecks. Curr Opin Plant Biol 13:478–484.  https://doi.org/10.1016/j.pbi.2010.04.011 CrossRefPubMedGoogle Scholar
  6. 6.
    Saric-Krsmanovic MM, Bozic DM, Radivojevic LM, Umiljendic JSG, Vrbnicanin SP (2017) Effect of Cuscuta campestris parasitism on the physiological and anatomical changes in untreated and herbicide-treated sugar beet. J Environ Sci Health Part B 52:812–816.  https://doi.org/10.1080/03601234.2017.1356167 CrossRefGoogle Scholar
  7. 7.
    Hibberd JM, Jeschke WD (2001) Solute flux into parasitic plants. J Exp Bot 52:2043–2049.  https://doi.org/10.1093/jexbot/52.363.2043 CrossRefPubMedGoogle Scholar
  8. 8.
    Koskela, Salonen, Mutikainen (2000) Local adaptation of a holoparasitic plant, Cuscuta europaea: variation among populations. J Evol Biol 13:749–755.  https://doi.org/10.1046/j.1420-9101.2000.00226.x CrossRefGoogle Scholar
  9. 9.
    Aukema JE (2003) Vectors, viscin, and Viscaceae: mistletoes as parasites, mutualists, and resources. Front Ecol Environ 1:212–219.  https://doi.org/10.1890/1540-9295(2003)001[0212:VVAVMA]2.0.CO;2 CrossRefGoogle Scholar
  10. 10.
    Hunter P (2016) Plant microbiomes and sustainable agriculture: deciphering the plant microbiome and its role in nutrient supply and plant immunity has great potential to reduce the use of fertilizers and biocides in agriculture. Embo Rep 17:1696–1699.  https://doi.org/10.15252/embr.201643476 CrossRefGoogle Scholar
  11. 11.
    Chialva M, Zhou Y, Spadaro D, Bonfante P (2018) Not only priming: soil microbiota may protect tomato from root pathogens. Plant Signal Behav 13:e1464855.  https://doi.org/10.1080/15592324.2018.1464855 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Egamberdieva D, Wirth SJ, Alqarawi AA, Abd_Allah EF, Hashem A (2017) Phytohormones and beneficial microbes: essential components for plants to balance stress and fitness. Front Microbiol 8:2104.  https://doi.org/10.3389/fmicb.2017.02104 CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Pii Y, Mimmo T, Tomasi N, Terzano R, Cesco S, Crecchio C (2015) Microbial interactions in the rhizosphere: beneficial influences of plant growth-promoting rhizobacteria on nutrient acquisition process. A review. Biol Fertil Soils 51:403–415.  https://doi.org/10.1007/s00374-015-0996-1 CrossRefGoogle Scholar
  14. 14.
    Feng H, Zhang N, Fu R, Liu Y, Krell T, du W, Shao J, Shen Q, Zhang R (2018) Recognition of dominant attractants by key chemoreceptors mediates recruitment of plant growth-promoting rhizobacteria: key determinants for rhizosphere chemotaxis. Environ Microbiol 21:402–415.  https://doi.org/10.1111/1462-2920.14472 CrossRefGoogle Scholar
  15. 15.
    Gifford I, Battenberg K, Vaniya A, Wilson A, Tian L, Fiehn O, Berry AM (2018) Distinctive patterns of flavonoid biosynthesis in roots and nodules of Datisca glomerata and Medicago spp. Revealed by metabolomic and gene expression profiles. Front Plant Sci 9.  https://doi.org/10.3389/fpls.2018.01463
  16. 16.
    López-Ráez JA, Shirasu K, Foo E (2017) Strigolactones in plant interactions with beneficial and detrimental organisms: the Yin and Yang. Trends Plant Sci 22:527–537.  https://doi.org/10.1016/j.tplants.2017.03.011 CrossRefPubMedGoogle Scholar
  17. 17.
    Jeschke WD, Bäumel P, Räth N, Czygan FC, Proksch P (1994) Modelling of the flows and partitioning of carbon and nitrogen in the holoparasite Cuscuta reflexa Roxb. and its host Lupinus albus L.II. Flows between host and parasite and within the parasitized host. J Exp Bot 45:801–812.  https://doi.org/10.1093/jxb/45.6.801 CrossRefGoogle Scholar
  18. 18.
    Jeschke WD, Hilpert A (1997) Sink-stimulated photosynthesis and sink-dependent increase in nitrate uptake: nitrogen and carbon relations of the parasitic association Cuscuta reflexa–Ricinus communis. Plant Cell Environ 20:47–56.  https://doi.org/10.1046/j.1365-3040.1997.d01-2.x CrossRefGoogle Scholar
  19. 19.
    Delavault P, Montiel G, Brun G, et al (2017) Chapter three - communication between host plants and parasitic plants. In: Becard G (ed) Advances in Botanical Research. Academic Press, pp 55–82Google Scholar
  20. 20.
    Dong M, Lu J, Zhang W et al (2006) Canada goldenrod ({\sl Solidago canadensis}): an invasive alien weed rapidly spreading in China. Acta Phytotaxon Sin 44:72–85CrossRefGoogle Scholar
  21. 21.
    Shen H, Ye W, Hong L, Huang H, Wang Z, Deng X, Yang Q, Xu Z (2006) Progress in parasitic plant biology: host selection and nutrient transfer. Plant Biol 8:175–185.  https://doi.org/10.1055/s-2006-923796 CrossRefPubMedGoogle Scholar
  22. 22.
    Yu H, Yu F-H, Miao S-L, Dong M (2008) Holoparasitic Cuscuta campestris suppresses invasive Mikania micrantha and contributes to native community recovery. Biol Conserv 141:2653–2661.  https://doi.org/10.1016/j.biocon.2008.08.002 CrossRefGoogle Scholar
  23. 23.
    Prider J, Watling J, Facelli JM (2009) Impacts of a native parasitic plant on an introduced and a native host species: implications for the control of an invasive weed. Ann Bot 103:107–115.  https://doi.org/10.1093/aob/mcn214 CrossRefPubMedGoogle Scholar
  24. 24.
    Baráth K (2012) A new method for evaluating host preference of Cuscuta species. Acta Bot Hungar 54:219–234CrossRefGoogle Scholar
  25. 25.
    Liao C, Peng R, Luo Y, Zhou X, Wu X, Fang C, Chen J, Li B (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a meta-analysis. New Phytol 177:706–714.  https://doi.org/10.1111/j.1469-8137.2007.02290.x CrossRefPubMedGoogle Scholar
  26. 26.
    Karger DN, Conrad O, Boehner J et al (2017) Data descriptor: climatologies at high resolution for the earth’s land surface areas. Sci Data 4:170122.  https://doi.org/10.1038/sdata.2017.122 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Yu H, Liu J, He W-M, Miao SL, Dong M (2011) Cuscuta australis restrains three exotic invasive plants and benefits native species. Biol Invasions 13:747–756CrossRefGoogle Scholar
  28. 28.
    Le Q-V, Tennakoon KU, Metali F et al (2015) Impact of Cuscuta australis infection on the photosynthesis of the invasive host, Mikania micrantha, under drought condition. Weed Biol Manag 15:138–146CrossRefGoogle Scholar
  29. 29.
    Weber E, Sun S-G, Li B (2008) Invasive alien plants in China: diversity and ecological insights. Biol Invasions 10:1411–1429.  https://doi.org/10.1007/s10530-008-9216-3 CrossRefGoogle Scholar
  30. 30.
    Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41:e1–e1CrossRefGoogle Scholar
  31. 31.
    Orgiazzi A, Lumini E, Nilsson RH, Girlanda M, Vizzini A, Bonfante P, Bianciotto V (2012) Unravelling soil fungal communities from different Mediterranean land-use backgrounds. PLoS One 7:e34847CrossRefGoogle Scholar
  32. 32.
    Callahan BJ, Sankaran K, Fukuyama JA, et al (2016) Bioconductor workflow for microbiome data analysis: from raw reads to community analyses. F1000Research 5:CrossRefGoogle Scholar
  33. 33.
    Callahan BJ, McMurdie PJ, Holmes SP (2017) Exact sequence variants should replace operational taxonomic units in marker-gene data analysis. ISME J 11:2639–2643CrossRefGoogle Scholar
  34. 34.
    Martin M (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.Journal 17:10–12.  https://doi.org/10.14806/ej.17.1.200 CrossRefGoogle Scholar
  35. 35.
    UNITE Community (2017) UNITE general FASTA release. Version 01.12.2017Google Scholar
  36. 36.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res 41:D590–D596.  https://doi.org/10.1093/nar/gks1219 CrossRefPubMedGoogle Scholar
  37. 37.
    Weiss S, Xu ZZ, Peddada S, Amir A, Bittinger K, Gonzalez A, Lozupone C, Zaneveld JR, Vázquez-Baeza Y, Birmingham A, Hyde ER, Knight R (2017) Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 5:27.  https://doi.org/10.1186/s40168-017-0237-y CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Nguyen NH, Song Z, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol 20:241–248CrossRefGoogle Scholar
  39. 39.
    Aßhauer KP, Wemheuer B, Daniel R, Meinicke P (2015) Tax4Fun: predicting functional profiles from metagenomic 16S rRNA data. Bioinformatics 31:2882–2884.  https://doi.org/10.1093/bioinformatics/btv287 CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    R Core Team (2018). R: a language and environment for statistical computingGoogle Scholar
  41. 41.
    Bates D, Maechler M, Bolker BM, Walker SC (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67:1–48CrossRefGoogle Scholar
  42. 42.
    Dixon P (2003) VEGAN, a package of R functions for community ecology. J Veg Sci 14:927–930.  https://doi.org/10.1111/j.1654-1103.2003.tb02228.x CrossRefGoogle Scholar
  43. 43.
    Zhang X, Pei Y-F, Zhang L, Guo B, Pendegraft AH, Zhuang W, Yi N (2018) Negative binomial mixed models for analyzing longitudinal microbiome data. Front Microbiol 9.  https://doi.org/10.3389/fmicb.2018.01683
  44. 44.
    Kanehisa M, Furumichi M, Tanabe M, Sato Y, Morishima K (2017) KEGG: new perspectives on genomes, pathways, diseases and drugs. Nucleic Acids Res 45:D353–D361.  https://doi.org/10.1093/nar/gkw1092 CrossRefPubMedGoogle Scholar
  45. 45.
    Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B Methodol 57:289–300Google Scholar
  46. 46.
    Lenth RV (2016) Least-squares means: the R package lsmeans. J Stat Softw 69:1–33.  https://doi.org/10.18637/jss.v069.i01 CrossRefGoogle Scholar
  47. 47.
    Dufrêne M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecol Monogr 67:345–366Google Scholar
  48. 48.
    De Cáceres M, Legendre P, Moretti M (2010) Improving indicator species analysis by combining groups of sites. Oikos 119:1674–1684.  https://doi.org/10.1111/j.1600-0706.2010.18334.x CrossRefGoogle Scholar
  49. 49.
    Wickham H (2009) ggplot2: elegant graphics for data analysis. Springer-Verlag, New YorkGoogle Scholar
  50. 50.
    Stockinger H, Krüger M, Schüßler A (2010) DNA barcoding of arbuscular mycorrhizal fungi. New Phytol 187:461–474.  https://doi.org/10.1111/j.1469-8137.2010.03262.x CrossRefPubMedGoogle Scholar
  51. 51.
    Weber SE, Diez JM, Andrews LV, Goulden ML, Aronson EL, Allen MF (2019) Responses of arbuscular mycorrhizal fungi to multiple coinciding global change drivers. Fungal Ecol 40:62–71.  https://doi.org/10.1016/j.funeco.2018.11.008 CrossRefGoogle Scholar
  52. 52.
    Fletcher A (2008) Fungal families of the world. By P. F. Cannon and P. M. Kirk. 2007. Wallingford, Oxfordshire, UK: CAB international. Pp xiii, 456, numerous colour plates and figures, 215×300 mm (A4). ISBN 978 0 85199 827 5, hardback. Available from CABI, Nosworthy Way, Wallingford, Oxfordshire OX10 8DE, email: cabi@cabi.org, website: www.cabi.org. Price £75. Lichenologist 40:463–463.  https://doi.org/10.1017/S0024282908009158 CrossRefGoogle Scholar
  53. 53.
    Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, Smyth GK (2015) Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res 43:e47–e47CrossRefGoogle Scholar
  54. 54.
    Gkarmiri K, Mahmood S, Ekblad A et al (2017) Identifying the active microbiome associated with roots and rhizosphere soil of oilseed rape. Appl Environ Microbiol 83:UNSP e01938–UNSP e01917.  https://doi.org/10.1128/AEM.01938-17 CrossRefGoogle Scholar
  55. 55.
    Jansen E, Michels M, van Til M, Doelman P (1994) Effects of heavy metals in soil on microbial diversity and activity as shown by the sensitivity-resistance index, an ecologically relevant parameter. Biol Fertil Soils 17:177–184.  https://doi.org/10.1007/BF00336319 CrossRefGoogle Scholar
  56. 56.
    Germida JJ, Siciliano SD, Renato de Freitas J, Seib AM (1998) Diversity of root-associated bacteria associated with field-grown canola (Brassica napus L.) and wheat (Triticum aestivum L.). FEMS Microbiol Ecol 26:43–50.  https://doi.org/10.1016/S0168-6496(98)00020-8 CrossRefGoogle Scholar
  57. 57.
    Grządziel J, Gałązka A (2018) Microplot long-term experiment reveals strong soil type influence on bacteria composition and its functional diversity. Appl Soil Ecol 124:117–123.  https://doi.org/10.1016/j.apsoil.2017.10.033 CrossRefGoogle Scholar
  58. 58.
    Savage JA, Clearwater MJ, Haines DF, Klein T, Mencuccini M, Sevanto S, Turgeon R, Zhang C (2016) Allocation, stress tolerance and carbon transport in plants: how does phloem physiology affect plant ecology? Plant Cell Environ 39:709–725.  https://doi.org/10.1111/pce.12602 CrossRefPubMedGoogle Scholar
  59. 59.
    Romaní AM, Fischer H, Mille-Lindblom C, Tranvik LJ (2006) Interactions of bacteria and fungi on decomposing litter: differential extracellular enzyme activities. Ecology 87:2559–2569CrossRefGoogle Scholar
  60. 60.
    van der Wal A, Geydan TD, Kuyper TW, de Boer W (2013) A thready affair: linking fungal diversity and community dynamics to terrestrial decomposition processes. FEMS Microbiol Rev 37:477–494.  https://doi.org/10.1111/1574-6976.12001 CrossRefPubMedGoogle Scholar
  61. 61.
    Berg B (2014) Decomposition patterns for foliar litter – a theory for influencing factors. Soil Biol Biochem 78:222–232.  https://doi.org/10.1016/j.soilbio.2014.08.005 CrossRefGoogle Scholar
  62. 62.
    Schneider T, Keiblinger KM, Schmid E, Sterflinger-Gleixner K, Ellersdorfer G, Roschitzki B, Richter A, Eberl L, Zechmeister-Boltenstern S, Riedel K (2012) Who is who in litter decomposition? Metaproteomics reveals major microbial players and their biogeochemical functions. ISME J 6:1749–1762.  https://doi.org/10.1038/ismej.2012.11 CrossRefPubMedPubMedCentralGoogle Scholar
  63. 63.
    Brannelly LA, Berger L, Marrantelli G, Skerratt LF (2015) Low humidity is a failed treatment option for chytridiomycosis in the critically endangered southern corroboree frog. Wildl Res 42:44–49.  https://doi.org/10.1071/WR14097 CrossRefGoogle Scholar
  64. 64.
    Onley JR, Ahsan S, Sanford RA, Loeffler FE (2018) Denitrification by Anaeromyxobacter dehalogenans, a common soil bacterium lacking the nitrite reductase genes nirS and nirK. Appl Environ Microbiol 84:UNSP e01985–UNSP e01917.  https://doi.org/10.1128/AEM.01985-17 CrossRefGoogle Scholar
  65. 65.
    Chao T-C, Kalinowski J, Nyalwidhe J, Hansmeier N (2010) Comprehensive proteome profiling of the Fe(III)-reducing myxobacterium Anaeromyxobacter dehalogenans 2CP-C during growth with fumarate and ferric citrate. Proteomics 10:1673–1684.  https://doi.org/10.1002/pmic.200900687 CrossRefPubMedGoogle Scholar
  66. 66.
    Sanford RA, Cole JR, Tiedje JM (2002) Characterization and description of Anaeromyxobacter dehalogenans gen. nov., sp. nov., an aryl-halorespiring facultative anaerobic myxobacterium. Appl Environ Microbiol 68:893–900.  https://doi.org/10.1128/AEM.68.2.893-900.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  67. 67.
    Locey KJ, Lennon JT (2016) Scaling laws predict global microbial diversity. Proc Natl Acad Sci U S A 113:5970–5975.  https://doi.org/10.1073/pnas.1521291113 CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Sanders IR, Koide RT, Shumway DL (1993) Mycorrhizal stimulation of plant parasitism. Can J Bot 71:1143–1146.  https://doi.org/10.1139/b93-134 CrossRefGoogle Scholar
  69. 69.
    Behdarvandi B, Guinel FC, Costea M (2015) Differential effects of ephemeral colonization by arbuscular mycorrhizal fungi in two Cuscuta species with different ecology. Mycorrhiza 25:573–585.  https://doi.org/10.1007/s00572-015-0632-9 CrossRefPubMedGoogle Scholar
  70. 70.
    Khalid AN, Iqbal SH (1995) Mycotrophy in a vascular stem parasite Cuscuta reflexa. Mycorrhiza 6:69–71.  https://doi.org/10.1007/s005720050109 CrossRefGoogle Scholar
  71. 71.
    Benvenuti S, Dinelli G, Bonetti A, Catizone P (2005) Germination ecology, emergence and host detection in Cuscuta campestris. Weed Res 45:270–278.  https://doi.org/10.1111/j.1365-3180.2005.00460.x CrossRefGoogle Scholar
  72. 72.
    Ofek-Lalzar M, Sela N, Goldman-Voronov M, Green SJ, Hadar Y, Minz D (2014) Niche and host-associated functional signatures of the root surface microbiome. Nat Commun 5:4950.  https://doi.org/10.1038/ncomms5950 CrossRefPubMedGoogle Scholar
  73. 73.
    Evans KC, Benomar S, Camuy-Vélez LA, Nasseri EB, Wang X, Neuenswander B, Chandler JR (2018) Quorum-sensing control of antibiotic resistance stabilizes cooperation in Chromobacterium violaceum. ISME J 12:1263–1272.  https://doi.org/10.1038/s41396-018-0047-7 CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Loh J, Pierson EA, Pierson LS et al (2002) Quorum sensing in plant-associated bacteria. Curr Opin Plant Biol 5:285–290.  https://doi.org/10.1016/S1369-5266(02)00274-1 CrossRefPubMedGoogle Scholar
  75. 75.
    Shi S, Nuccio EE, Shi ZJ, He Z, Zhou J, Firestone MK (2016) The interconnected rhizosphere: high network complexity dominates rhizosphere assemblages. Ecol Lett 19:926–936.  https://doi.org/10.1111/ele.12630 CrossRefPubMedGoogle Scholar
  76. 76.
    Jung BK, Khan AR, Hong S-J, Park GS, Park YJ, Kim HJ, Jeon HJ, Khan MA, Waqas M, Lee IJ, Lee SE, Shin JH (2017) Quorum sensing activity of the plant growth-promoting rhizobacterium <emphasis type="italic">Serratia glossinae</emphasis> GS2 isolated from the sesame (<emphasis type="italic">Sesamum indicum</emphasis> L.) rhizosphere. Ann Microbiol 67:623–632.  https://doi.org/10.1007/s13213-017-1291-1 CrossRefGoogle Scholar
  77. 77.
    DeAngelis KM, Lindow SE, Firestone MK (2008) Bacterial quorum sensing and nitrogen cycling in rhizosphere soil. FEMS Microbiol Ecol 66:197–207.  https://doi.org/10.1111/j.1574-6941.2008.00550.x CrossRefPubMedGoogle Scholar
  78. 78.
    Predich M, Nair G, Smith I (1992) Bacillus subtilis early sporulation genes kinA, spo0F, and spo0A are transcribed by the RNA polymerase containing sigma H. J Bacteriol 174:2771–2778.  https://doi.org/10.1128/jb.174.9.2771-2778.1992 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Kakeshita H, Takamatsu H, Amikura R, Nakamura K, Watabe K, Yamane K (2001) Effect of depletion of FtsY on spore morphology and the protein composition of the spore coat layer in Bacillus subtilis. FEMS Microbiol Lett 195:41–46.  https://doi.org/10.1111/j.1574-6968.2001.tb10495.x CrossRefPubMedGoogle Scholar
  80. 80.
    Hutchison EA, Miller DA, Angert ER (2014) Sporulation in Bacteria: beyond the standard model. Microbiol Spectr 2.  https://doi.org/10.1128/microbiolspec.TBS-0013-2012
  81. 81.
    Raaijmakers JM, Mazzola M (2012) Diversity and natural functions of antibiotics produced by beneficial and plant pathogenic Bacteria. Annu Rev Phytopathol 50:403–424.  https://doi.org/10.1146/annurev-phyto-081211-172908 CrossRefPubMedGoogle Scholar
  82. 82.
    Joshi M, Rong X, Moll S, Kers J, Franco C, Loria R (2007) Streptomyces turgidiscabies secretes a novel virulence protein, Nec1, which facilitates infection. Mol Plant-Microbe Interact MPMI 20:599–608.  https://doi.org/10.1094/MPMI-20-6-0599 CrossRefPubMedGoogle Scholar
  83. 83.
    Raaijmakers JM, de Bruijn I, de Kock MJD (2006) Cyclic lipopeptide production by plant-associated Pseudomonas spp.: diversity, activity, biosynthesis, and regulation. Mol Plant-Microbe Interact MPMI 19:699–710.  https://doi.org/10.1094/MPMI-19-0699 CrossRefPubMedGoogle Scholar
  84. 84.
    Scholz-Schroeder BK, Hutchison ML, Grgurina I, Gross DC (2001) The contribution of syringopeptin and syringomycin to virulence of Pseudomonas syringae pv. syringae strain B301D on the basis of sypA and syrB1 biosynthesis mutant analysis. Mol Plant-Microbe Interact MPMI 14:336–348.  https://doi.org/10.1094/MPMI.2001.14.3.336 CrossRefPubMedGoogle Scholar
  85. 85.
    Tegeder M, Masclaux-Daubresse C (2018) Source and sink mechanisms of nitrogen transport and use. New Phytol 217:35–53.  https://doi.org/10.1111/nph.14876 CrossRefPubMedGoogle Scholar
  86. 86.
    Ranjan A, Ichihashi Y, Farhi M, Zumstein K, Townsley B, David-Schwartz R, Sinha NR (2014) De novo assembly and characterization of the transcriptome of the parasitic weed dodder identifies genes associated with plant parasitism. Plant Physiol 166:1186–1199.  https://doi.org/10.1104/pp.113.234864 CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Gao F-L, Che X-X, Yu F-H, Li J-M (2019) Cascading effects of nitrogen, rhizobia and parasitism via a host plant. Flora 251:62–67.  https://doi.org/10.1016/j.flora.2018.12.007 CrossRefGoogle Scholar
  88. 88.
    Anthony MA, Frey SD, Stinson KA (2017) Fungal community homogenization, shift in dominant trophic guild, and appearance of novel taxa with biotic invasion. Ecosphere 8:e01951.  https://doi.org/10.1002/ecs2.1951 CrossRefGoogle Scholar
  89. 89.
    Sielaff AC, Upton RN, Hofmockel KS et al (2018) Microbial community structure and functions differ between native and novel (exotic-dominated) grassland ecosystems in an 8-year experiment. Plant Soil 432:359–372.  https://doi.org/10.1007/s11104-018-3796-1 CrossRefGoogle Scholar
  90. 90.
    Toju H, Kurokawa H, Kenta T (2019) Factors influencing leaf- and root-associated communities of bacteria and fungi across 33 plant orders in a grassland. Front Microbiol 10.  https://doi.org/10.3389/fmicb.2019.00241
  91. 91.
    Dawson W, Schrama M (2016) Identifying the role of soil microbes in plant invasions. J Ecol 104:1211–1218CrossRefGoogle Scholar
  92. 92.
    Smit E, Leeflang P, Gommans S, van den Broek J, van Mil S, Wernars K (2001) Diversity and seasonal fluctuations of the dominant members of the bacterial soil community in a wheat field as determined by cultivation and molecular methods. Appl Environ Microbiol 67:2284–2291.  https://doi.org/10.1128/AEM.67.5.2284-2291.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Dawson W, Fischer M, van Kleunen M (2012) Common and rare plant species respond differently to fertilisation and competition, whether they are alien or native. Ecol Lett 15:873–880.  https://doi.org/10.1111/j.1461-0248.2012.01811.x CrossRefPubMedGoogle Scholar
  94. 94.
    Liu Y, van Kleunen M (2017) Responses of common and rare aliens and natives to nutrient availability and fluctuations. J Ecol 105:1111–1122.  https://doi.org/10.1111/1365-2745.12733 CrossRefGoogle Scholar
  95. 95.
    Parepa M, Fischer M, Bossdorf O (2013) Environmental variability promotes plant invasion. Nat Commun 4:1604.  https://doi.org/10.1038/ncomms2632 CrossRefPubMedGoogle Scholar
  96. 96.
    Zhang P, Li B, Wu J, Hu S (2019) Invasive plants differentially affect soil biota through litter and rhizosphere pathways: a meta-analysis. Ecol Lett 22:200–210.  https://doi.org/10.1111/ele.13181 CrossRefPubMedGoogle Scholar
  97. 97.
    Wu A-P, Zhong W, Yuan J-R, Qi LY, Chen FL, Liang YS, He FF, Wang YH (2019) The factors affecting a native obligate parasite, Cuscuta australis, in selecting an exotic weed, Humulus scandens, as its host. Sci Rep 9:511.  https://doi.org/10.1038/s41598-018-36997-7 CrossRefPubMedPubMedCentralGoogle Scholar
  98. 98.
    Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol:6.  https://doi.org/10.3389/fmicb.2015.00745
  99. 99.
    Elser JJ, Acharya K, Kyle M, Cotner J, Makino W, Markow T, Watts T, Hobbie S, Fagan W, Schade J, Hood J, Sterner RW (2003) Growth rate–stoichiometry couplings in diverse biota. Ecol Lett 6:936–943.  https://doi.org/10.1046/j.1461-0248.2003.00518.x CrossRefGoogle Scholar
  100. 100.
    Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10:1135–1142.  https://doi.org/10.1111/j.1461-0248.2007.01113.x CrossRefPubMedGoogle Scholar
  101. 101.
    Shen H, Ye W, Hong L, Cao H, Wang Z (2005) Influence of the obligate parasite Cuscuta campestris on growth and biomass allocation of its host Mikania micrantha. J Exp Bot 56:1277–1284.  https://doi.org/10.1093/jxb/eri128 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and ConservationTaizhou UniversityTaizhouChina
  2. 2.Department of BiologyUniversity of Konstanz, Universitätsstrasse 10KonstanzGermany

Personalised recommendations