Advertisement

Endogenous NO Is Involved in Dissimilar Responses to Rehydration and Pb(NO3)2 in Ramalina farinacea Thalli and Its Isolated Phycobionts

  • Joana R. ExpósitoEmail author
  • A. J. Coello
  • E. Barreno
  • L. M. Casano
  • M. Catalá
Environmental Microbiology

Abstract

Lichens undergo desiccation/rehydration cycles and are permeable to heavy metals, which induce free radicals. Nitrogen monoxide (NO) regulates important cellular functions, but the research on lichen NO is still very scarce. In Ramalina farinacea thalli, NO seems to be involved in the peroxidative damage caused by air pollution, antioxidant defence and regulation of lipid peroxidation and photosynthesis. Our hypothesis is that NO also has a critical role during the rehydration and in the responses to lead of its isolated phycobionts (Trebouxia sp. TR9 and Trebouxia jamesii). Therefore, we studied the intracellular reactive oxygen species (ROS) production, lipid peroxidation and chlorophyll autofluorescence during rehydration of thalli and isolated microalgae in the presence of a NO scavenger and Pb(NO3)2. During rehydration, NO scavenging modulates free radical release and chlorophyll autofluorescence but not lipid peroxidation in both thalli and phycobionts. Pb(NO3)2 reduced free radical release (hormetic effect) both in the whole thallus and in microalgae. However, only in TR9, the ROS production, chlorophyll autofluorescence and lipid peroxidation were dependent on NO. In conclusion, Pb hormetic effect seems to depend on NO solely in TR9, while is doubtful for T. jamesii and the whole thalli.

Keywords

Heavy metals Lichen Microalgae Nitric oxide Rehydration Free radicals 

Abbreviations

A.u.

arbitrary units

c-PTIO

2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (carboxy-PTIO)

DCFH2-DA

2,7-dichlorodihydrofluorescein diacetate

HMs

Heavy Metals

MDA

Malondialdehyde

PGPR

Plant growth-promoting rhizobacteria

ROS

Reactive oxygen species

RNS

Reactive nitrogen species

TBA

2-thiobarbituric acid

T. jamesii

Trebouxia jamesii

TR9

Trebouxia sp. TR9

Notes

Acknowledgements

We want to acknowledge the technical assistance of Álvarez R. and Del Hoyo A. who cultured and dehydrated the samples of phycobionts, Díaz C. who made the analysis of free radicals, chlorophyll autofluorescence and lipid peroxidation in Ramalina farinacea and Mejuto I. who helped in microscopy. We want to thank del Campo. E for the revision of the draft.

Authors’ Contributions

The study was designed by Barreno E., Catalá M. and Casano L. M. Catalá M. performed the measurements of free radical production kinetics and chlorophyll autofluorescence. Coello A.J. did the study of lipid peroxidation in phycobionts. Casano L.M. provided biological material. Expósito J.R. analysed the data, made the figures and wrote the draft under the supervision of Catalá M. All the authors have revised and approved the final draft.

Funding Information

This study was funded by the Spanish Ministry of Economy and Competitiveness (MINECO CGL2016-79158-P and CGL2016-40058-P), Comunidad de Madrid - European Commission (Youth Employment Intiative, Spain) (PEJ-2017-AI/AMB-6337), FEDER and the Generalitat Valenciana (PROMETEOIII/2017/039 GVA).

References

  1. 1.
    Margulis L, Barreno E (2003) Looking at lichens. Bioscience 53:776.  https://doi.org/10.1641/0006-3568(2003)053[0776:LAL]2.0.CO;2 CrossRefGoogle Scholar
  2. 2.
    Grube M, Cardinale M, de Castro JJ et al (2009) Species-specific structural and functional diversity of bacterial communities in lichen symbioses. Isme J 3:1105–1115.  https://doi.org/10.1038/ismej.2009.63 CrossRefGoogle Scholar
  3. 3.
    García-Breijo FJ, Reig-Armiñana J, Salvá G, Vázquez VM, Barreno E (2010) El liquen Ramalina farinacea (L.) Ach. en Asturias. Estructura de talos e identificación molecular de los dos ficobiontes de Trebouxia que coexisten. Boletín Ciencias Nat. RIDEA 51:325–336Google Scholar
  4. 4.
    Aschenbrenner IA, Cernava T, Berg G, Grube M (2016) Understanding microbial multi-species symbioses. Front. Microbiol. 7:1–9.  https://doi.org/10.3389/fmicb.2016.00180 CrossRefGoogle Scholar
  5. 5.
    Honegger R (1991) Functional aspects of the lichen Symbiosis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42:553–578.  https://doi.org/10.1146/annurev.pp.42.060191.003005 CrossRefGoogle Scholar
  6. 6.
    Cernava T, Erlacher A, Aschenbrenner IA, Krug L, Lassek C, Riedel K, Grube M, Berg G (2017) Deciphering functional diversification within the lichen microbiota by meta-omics. Microbiome 5:82.  https://doi.org/10.1186/s40168-017-0303-5 CrossRefGoogle Scholar
  7. 7.
    Nash TH (2008) Lichen biology2nd edn. Cambridge University Press, New YorkCrossRefGoogle Scholar
  8. 8.
    Honegger R (1998) The lichen symbiosis - what is so spectacular about it? Lichenologist 30:193–212.  https://doi.org/10.1006/lich.1998.0140 CrossRefGoogle Scholar
  9. 9.
    Ahmadjian V (1995) Lichens are more important than you think. Bioscience 45:124–124.  https://doi.org/10.1093/bioscience/45.3.124 CrossRefGoogle Scholar
  10. 10.
    Conti ME, Cecchetti G (2001) Biological monitoring: lichens as bioindicators of air pollution assessment - a review. Environ. Pollut. 114:471–492.  https://doi.org/10.1016/S0269-7491(00)00224-4 CrossRefGoogle Scholar
  11. 11.
    Giordani P, Calatayud V, Stofer S, Seidling W, Granke O, Fischer R (2014) Detecting the nitrogen critical loads on European forests by means of epiphytic lichens. A signal-to-noise evaluation. For. Ecol. Manag. 311:29–40.  https://doi.org/10.1016/j.foreco.2013.05.048 CrossRefGoogle Scholar
  12. 12.
    Ochoa-Hueso R, Munzi S, Alonso R, Arróniz-Crespo M, Avila A, Bermejo V, Bobbink R, Branquinho C, Concostrina-Zubiri L, Cruz C, Cruz de Carvalho R, de Marco A, Dias T, Elustondo D, Elvira S, Estébanez B, Fusaro L, Gerosa G, Izquieta-Rojano S, Lo Cascio M, Marzuoli R, Matos P, Mereu S, Merino J, Morillas L, Nunes A, Paoletti E, Paoli L, Pinho P, Rogers IB, Santos A, Sicard P, Stevens CJ, Theobald MR (2017) Ecological impacts of atmospheric pollution and interactions with climate change in terrestrial ecosystems of the Mediterranean Basin: current research and future directions. Environ. Pollut. 227:194–206.  https://doi.org/10.1016/j.envpol.2017.04.062 CrossRefGoogle Scholar
  13. 13.
    Ockenden WA, Steinnes E, Parker C, Jones KC (1998) Observations on persistent organic pollutants in plants: implications for their use as passive air samplers and for POP cycling. Environ Sci Technol 32:2721–2726.  https://doi.org/10.1021/es980150y CrossRefGoogle Scholar
  14. 14.
    Poličnik H, Franc B, Cvetka RL (2004) Monitoring of short-term heavy metal deposition by accumulation in epiphytic lichens (Hypogymnia physodes (L.) Nyl.). J. Atmos. Chem. 49:223–230CrossRefGoogle Scholar
  15. 15.
    Sett R, Kundu M (2016) Epiphytic lichens: their usefulness as bio-indicators of air pollution. Donnish J Res Environ Stud 3:17–24Google Scholar
  16. 16.
    Beckett RP, Kranner I, Minibayeva FV (2008) Stress physiology and the symbiosis. Lichen biology2nd edn. Cambridge University Press, New York, pp 134–151CrossRefGoogle Scholar
  17. 17.
    Álvarez R, del Hoyo A, Díaz-Rodríguez C, Coello AJ, del Campo EM, Barreno E, Catalá M, Casano LM (2015) Lichen rehydration in heavy metal-polluted environments: Pb modulates the oxidative response of both Ramalina farinacea thalli and its isolated microalgae. Microb. Ecol. 69:698–709.  https://doi.org/10.1007/s00248-014-0524-0 CrossRefGoogle Scholar
  18. 18.
    Weissman L, Garty J, Hochman A (2005) Rehydration of the lichen Ramalina lacera results in production of reactive oxygen species and nitric oxide and a decrease in antioxidants. Appl. Environ. Microbiol. 71:2121–2129CrossRefGoogle Scholar
  19. 19.
    Catalá M, Gasulla F, Pradas del Real AE et al (2010) Fungal-associated NO is involved in the regulation of oxidative stress during rehydration in lichen symbiosis. BMC Microbiol. 10:297CrossRefGoogle Scholar
  20. 20.
    Kranner I, Beckett R, Hochman A, Nash TH (2008) Desiccation-tolerance in lichens: a review. Bryologist 111:576–593CrossRefGoogle Scholar
  21. 21.
    Demmig-Adams B, Adams WW (2000) Harvesting sunlight safely. Nature 403(371):373–374.  https://doi.org/10.1038/35000315 Google Scholar
  22. 22.
    Halliwell B, Cross CE (1994) Oxygen-derived species: their relation to human disease and environmental stress. Environ. Health Perspect. 102(Suppl):5–12Google Scholar
  23. 23.
    Jubany-Marí T, Munné-Bosch S, Alegre L (2010) Redox regulation of water stress responses in field-grown plants. Role of hydrogen peroxide and ascorbate. Plant Physiol. Biochem. 48:351–358.  https://doi.org/10.1016/j.plaphy.2010.01.021 CrossRefGoogle Scholar
  24. 24.
    Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 33:453–467.  https://doi.org/10.1111/j.1365-3040.2009.02041.x CrossRefGoogle Scholar
  25. 25.
    Choudhury S, Panda P, Sahoo L, Panda SK (2013) Reactive oxygen species signaling in plants under abiotic stress. Plant Signal. Behav. 8:e23681.  https://doi.org/10.4161/psb.23681 CrossRefGoogle Scholar
  26. 26.
    Halliwell B, Gutteridge JMC (2007) Free radicals in biology and medicineGoogle Scholar
  27. 27.
    Sharma SS, Dietz K-J (2009) The relationship between metal toxicity and cellular redox imbalance. Trends Plant Sci. 14:43–50.  https://doi.org/10.1016/j.tplants.2008.10.007 CrossRefGoogle Scholar
  28. 28.
    Phang IC, Leung DWM, Taylor HH, Burritt DJ (2011) The protective effect of sodium nitroprusside (SNP) treatment on Arabidopsis thaliana seedlings exposed to toxic level of Pb is not linked to avoidance of Pb uptake. Ecotoxicol. Environ. Saf. 74:1310–1315.  https://doi.org/10.1016/j.ecoenv.2011.02.006 CrossRefGoogle Scholar
  29. 29.
    Shahid M, Pourrut B, Dumat C, Nadeem M, Aslam M, Pinelli E (2014) Heavy-metal-induced reactive oxygen species: Phytotoxicity and physicochemical changes in plants. Rev. Environ. Contam. Toxicol. 232:1–44Google Scholar
  30. 30.
    Branquinho C, Brown DH, Máguas C, Catarino F (1997) Lead (Pb) uptake and its effects on membrane integrity and chlorophyll fluorescence in different lichen species. Environ. Exp. Bot. 37:95–105.  https://doi.org/10.1016/S0098-8472(96)01038-6 CrossRefGoogle Scholar
  31. 31.
    Álvarez R, del Hoyo A, García-Breijo F, Reig-Armiñana J, del Campo EM, Guéra A, Barreno E, Casano LM (2012) Different strategies to achieve Pb-tolerance by the two Trebouxia algae coexisting in the lichen Ramalina farinacea. J. Plant Physiol. 169:1797–1806.  https://doi.org/10.1016/j.jplph.2012.07.005 CrossRefGoogle Scholar
  32. 32.
    Catalá M, Gasulla F, Pradas Del Real AE et al (2013) The organic air pollutant cumene hydroperoxide interferes with NO antioxidant role in rehydrating lichen. Environ. Pollut. 179:277–284.  https://doi.org/10.1016/j.envpol.2013.04.015 CrossRefGoogle Scholar
  33. 33.
    Mattson MP (2008) Hormesis defined. Ageing Res. Rev. 7:1–7CrossRefGoogle Scholar
  34. 34.
    Kranner I, Cram WJ, Zorn M, Wornik S, Yoshimura I, Stabentheiner E, Pfeifhofer HW (2005) Antioxidants and photoprotection in a lichen as compared with its isolated symbiotic partners. Proc. Natl. Acad. Sci. U. S. A. 102:3141–3146.  https://doi.org/10.1073/pnas.0407716102 CrossRefGoogle Scholar
  35. 35.
    Casano LM, Braga MR, Álvarez R, del Campo EM, Barreno E (2015) Differences in the cell walls and extracellular polymers of the two Trebouxia microalgae coexisting in the lichen Ramalina farinacea are consistent with their distinct capacity to immobilize extracellular Pb. Plant Sci. 236:195–204.  https://doi.org/10.1016/j.plantsci.2015.04.003 CrossRefGoogle Scholar
  36. 36.
    Feelisch M, Martin JF (1995) The early role of nitric oxide in evolution. Trends Ecol. Evol. 10:496–499CrossRefGoogle Scholar
  37. 37.
    Beligni Maria V, Lamattina L (1999) Nitric oxide counteracts reactive oxygen species actions in plant tissues. Planta 208:337–344.  https://doi.org/10.1007/s004250050567 CrossRefGoogle Scholar
  38. 38.
    Crawford NM, Guo F-Q (2005) New insights into nitric oxide metabolism and regulatory functions. Trends Plant Sci. 10:195–200.  https://doi.org/10.1016/j.tplants.2005.02.008 CrossRefGoogle Scholar
  39. 39.
    Patel RP, McAndrew J, Sellak H, White CR, Jo H, Freeman BA, Darley-Usmar VM (1999) Biological aspects of reactive nitrogen species. Biochim. Biophys. Acta Bioenerg. 1411:385–400.  https://doi.org/10.1016/S0005-2728(99)00028-6 CrossRefGoogle Scholar
  40. 40.
    Hichri I, Boscari A, Meilhoc E et al (2016) Nitric oxide: a multitask player in plant–microorganism symbioses. In: García-Mata C (ed) Lamattina L. Springer International Publishing, Gasotransmitters in Plants. The Rise of a New Paradigm in Cell Signaling, pp 239–268Google Scholar
  41. 41.
    Wendehenne D, Pugin A, Klessig DF, Durner J (2001) Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci. 6:177–183.  https://doi.org/10.1016/S1360-1385(01)01893-3 CrossRefGoogle Scholar
  42. 42.
    Meilhoc E, Boscari A, Bruand C, Puppo A, Brouquisse R (2011) Nitric oxide in legume-rhizobium symbiosis. Plant Sci. 181:573–581.  https://doi.org/10.1016/j.plantsci.2011.04.007 CrossRefGoogle Scholar
  43. 43.
    Hichri I, Boscari A, Castella C, Rovere M, Puppo A, Brouquisse R (2015) Nitric oxide: a multifaceted regulator of the nitrogen-fixing symbiosis. J. Exp. Bot. 66:2877–2887.  https://doi.org/10.1093/jxb/erv051 CrossRefGoogle Scholar
  44. 44.
    di Palma AA, Lamattina L, Creus CM (2011) Nitric oxide as a signal molecule in intracellular and extracellular bacteria-plant interactions. Ecol. Asp. Nitrogen Metab. Plants:397–420.  https://doi.org/10.1002/9780470959404.ch17
  45. 45.
    Chen Y, Zhang Z, Jiang H et al (2013) Research progress in nitric oxide biosynthesis, degradation and function in fungi. Wei Sheng Wu Xue Bao 53:6–14Google Scholar
  46. 46.
    Smith C, Aptroot A, Coppins B et al (2009) The lichens of Great Britain and Ireland. The British Lichen Society, LondonGoogle Scholar
  47. 47.
    del Campo EM, Gimeno J, de Nova JPG et al (2010) South European populations of Ramalina farinacea (L.) Ach. share different Trebouxia algae. In: Nash III TH, Geiser L, McCune B et al (eds) Biology of lichens: ecology, environmental monitoring, systematics and cyber applications. Germany, Stuttgart, pp 247–256Google Scholar
  48. 48.
    Catalá M, Gasulla F, Pradas del Real AE et al (2010) Nitric oxide is involved in oxidative stress during rehydration of Ramalina farinacea (L.) ach. In the presence of the oxidative air pollutant cumene hydroperoxide. Biol lichens – Symbiosis. Ecol. Environm. Monit. Syst. Cyber Appl. 105:87–92Google Scholar
  49. 49.
    Casano LM, Del Campo EM, García-Breijo FJ et al (2011) Two Trebouxia algae with different physiological performances are ever-present in lichen thalli of Ramalina farinacea. Coexistence versus competition? Environ. Microbiol. 13:806–818CrossRefGoogle Scholar
  50. 50.
    Moya P, Molins A, Martinez-Alberola F et al (2017) Unexpected associated microalgal diversity in the lichen Ramalina farinacea is uncovered by pyrosequencing analyses. PLoS One 12:1–21.  https://doi.org/10.1371/journal.pone.0175091 CrossRefGoogle Scholar
  51. 51.
    del Hoyo A, Álvarez R, del Campo EM, Gasulla F, Barreno E, Casano LM (2011) Oxidative stress induces distinct physiological responses in the two Trebouxia phycobionts of the lichen Ramalina farinacea. Ann. Bot. 107:109–118.  https://doi.org/10.1093/aob/mcq206 CrossRefGoogle Scholar
  52. 52.
    Gasulla F, De Nova PG, Esteban-Carrasco A et al (2009) Dehydration rate and time of desiccation affect recovery of the lichenic algae Trebouxia erici: alternative and classical protective mechanisms. Planta 231:195–208.  https://doi.org/10.1007/s00425-009-1019-y CrossRefGoogle Scholar
  53. 53.
    Du Z, Bramlage WJ (1992) Modified thiobarbituric acid assay for measuring lipid oxidation in sugar-rich plant tissue extracts. J. Agric. Food Chem. 40:1566–1570.  https://doi.org/10.1021/jf00021a018 CrossRefGoogle Scholar
  54. 54.
    Kováčik J, Dresler S, Micalizzi G, Babula P, Hladký J, Mondello L (2019) Nitric oxide affects cadmium-induced changes in the lichen Ramalina farinacea. Nitric Oxide - Biol Chem 83:11–18.  https://doi.org/10.1016/j.niox.2018.12.001 CrossRefGoogle Scholar
  55. 55.
    Wodala B, Deak Z, Vass I et al (2008) In vivo target sites of nitric oxide in photosynthetic Electron transport as studied by chlorophyll fluorescence in pea leaves. Plant Physiol. 146:1920–1927CrossRefGoogle Scholar
  56. 56.
    Kováčik J, Klejdus B, Babula P, Hedbavny J (2015) Nitric oxide donor modulates cadmium-induced physiological and metabolic changes in the green alga Coccomyxa subellipsoidea. Algal Res. 8:45–52.  https://doi.org/10.1016/j.algal.2015.01.004 CrossRefGoogle Scholar
  57. 57.
    Malkin R, Bearden A (1973) Detection of a free radical in the primary reaction of chloroplast photosystem II. Proc. Natl. … 70:294–297CrossRefGoogle Scholar
  58. 58.
    Harbour J, Bolton J (1975) Superoxide formation in spinach chloroplasts: Electron spin resonance detection by spin trapping. Biochem. Biophys. Res. Commun. 64:803–807CrossRefGoogle Scholar
  59. 59.
    Härtel H, Haseloff RF, Ebert B, Rank B (1992) Free radical formation in chloroplasts. Methyl viologen action. J. Photochem. Photobiol. 12:375–387.  https://doi.org/10.1016/1011-1344(92)85042-S 
  60. 60.
    Ayala A, Muñoz MF (2014) Argüelles S (2014) lipid peroxidation: production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxidative Med. Cell. Longev. 2014:1–31.  https://doi.org/10.1155/2014/360438 CrossRefGoogle Scholar
  61. 61.
    Mylonas C, Kouretas D (1999) Lipid peroxidation and tissue damage. In Vivo 13:295–309Google Scholar
  62. 62.
    Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am. J. Clin. Nutr. 57:715S–725SCrossRefGoogle Scholar
  63. 63.
    O’Donnell VB, Chumley PH, Hogg N et al (1997) Nitric oxide inhibition of lipid peroxidation : kinetics of reaction with lipid Peroxyl radicals and comparison with alpha-tocopherol. Biochemistry 2960:15216–15223.  https://doi.org/10.1021/bi971891z CrossRefGoogle Scholar
  64. 64.
    Hogg N, Kalyanaraman B (1999) Nitric oxide and lipid peroxidation. Biochim. Biophys. Acta Bioenerg. 1411:378–384.  https://doi.org/10.1016/S0005-2728(99)00027-4 CrossRefGoogle Scholar
  65. 65.
    Parankusam S, Adimulam SS, Bhatnagar-Mathur P, Sharma KK (2017) Nitric oxide (NO) in plant heat stress tolerance: current knowledge and perspectives. Front. Plant Sci. 8:1–18.  https://doi.org/10.3389/fpls.2017.01582 CrossRefGoogle Scholar
  66. 66.
    Kong J, Dong Y, Xu L, Liu S, Bai X (2014) Effects of foliar application of salicylic acid and nitric oxide in alleviating iron deficiency induced chlorosis of Arachis hypogaea L. Bot. Stud. 55:1–12.  https://doi.org/10.1186/1999-3110-55-9 CrossRefGoogle Scholar
  67. 67.
    Oz MT, Eyidogan F, Yucel M (2015) Nitric oxide action in abiotic stress responses in plants. 21–42.  https://doi.org/10.1007/978-3-319-17804-2
  68. 68.
    Arasimowicz-Jelonek M, Floryszak-Wieczorek J, Kubiś J (2009) Involvement of nitric oxide in water stress-induced responses of cucumber roots. Plant Sci. 177:682–690.  https://doi.org/10.1016/j.plantsci.2009.09.007 CrossRefGoogle Scholar
  69. 69.
    Meilhoc E, Cam Y, Skapski A, Bruand C (2010) The response to nitric oxide of the nitrogen-fixing symbiont Sinorhizobium meliloti. Mol. Plant-Microbe Interact. 23:748–759.  https://doi.org/10.1094/MPMI-23-6-0748 CrossRefGoogle Scholar
  70. 70.
    Moreau M, Lindermayr C, Durner J, Klessig DF (2010) NO synthesis and signaling in plants - where do we stand? Physiol. Plant. 138:372–383.  https://doi.org/10.1111/j.1399-3054.2009.01308.x CrossRefGoogle Scholar
  71. 71.
    Hichri I, Meilhoc E, Boscari A et al (2016) Nitric oxide. Jack-of-all-trades of the nitrogen-fixing Symbiosis? Advances in botanical researchGoogle Scholar
  72. 72.
    Kováčik J, Rotková G, Bujdoš M, Babula P, Peterková V, Matúš P (2017) Ascorbic acid protects Coccomyxa subellipsoidea against metal toxicity through modulation of ROS/NO balance and metal uptake. J. Hazard. Mater. 339:200–207.  https://doi.org/10.1016/j.jhazmat.2017.06.035 CrossRefGoogle Scholar
  73. 73.
    Pereira P, de Pablo H, Rosa-Santos F, Pacheco M, Vale C (2009) Metal accumulation and oxidative stress in Ulva sp. substantiated by response integration into a general stress index. Aquat. Toxicol. 91:336–345.  https://doi.org/10.1016/j.aquatox.2008.12.003 CrossRefGoogle Scholar
  74. 74.
    Ozturk S, Aslim B, Suludere Z, Tan S (2014) Metal removal of cyanobacterial exopolysaccharides by uronic acid content and monosaccharide composition. Carbohydr. Polym. 101:265–271.  https://doi.org/10.1016/j.carbpol.2013.09.040 CrossRefGoogle Scholar
  75. 75.
    Laspina NV, Groppa MD, Tomaro ML, Benavides MP (2005) Nitric oxide protects sunflower leaves against cd-induced oxidative stress. Plant Sci. 169:323–330.  https://doi.org/10.1016/j.plantsci.2005.02.007 CrossRefGoogle Scholar
  76. 76.
    Xiong J, Fu G, Tao L, Zhu C (2010) Roles of nitric oxide in alleviating heavy metal toxicity in plants. Arch. Biochem. Biophys. 497:13–20.  https://doi.org/10.1016/j.abb.2010.02.014 CrossRefGoogle Scholar
  77. 77.
    Singh HP, Kaur S, Batish DR, Sharma VP, Sharma N, Kohli RK (2009) Nitric oxide alleviates arsenic toxicity by reducing oxidative damage in the roots of Oryza sativa (rice). Nitric Oxide - Biol Chem 20:289–297.  https://doi.org/10.1016/j.niox.2009.02.004 CrossRefGoogle Scholar
  78. 78.
    Wang Q, Liang X, Dong Y, Xu L, Zhang X, Hou J, Fan Z (2013) Effects of exogenous nitric oxide on cadmium toxicity, element contents and antioxidative system in perennial ryegrass. Plant Growth Regul. 69:11–20.  https://doi.org/10.1007/s10725-012-9742-y CrossRefGoogle Scholar
  79. 79.
    Jing Wei J, Yue Fei X, Yuan Fang H (2010) Protective effect of nitric oxide against arsenic-induced oxidative damage in tall fescue leaves. African J. Biotechnol. 9:1619–1627.  https://doi.org/10.5897/AJB10.1442 CrossRefGoogle Scholar
  80. 80.
    Groppa MD, Rosales EP, Iannone MF, Benavides MP (2008) Nitric oxide, polyamines and cd-induced phytotoxicity in wheat roots. Phytochemistry 69:2609–2615.  https://doi.org/10.1016/j.phytochem.2008.07.016 CrossRefGoogle Scholar
  81. 81.
    Singh AK, Sharma L, Mallick N (2004) Antioxidative role of nitric oxide on copper toxicity to a chlorophycean alga, Chlorella. Ecotoxicol. Environ. Saf. 59:223–227.  https://doi.org/10.1016/j.ecoenv.2003.10.009 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Departamento de Biología y Geología, Física y Química InorgánicaUniversidad Rey Juan Carlos, ESCETMóstoles, MadridSpain
  2. 2.Departamento de Biodiversidad y ConservaciónReal Jardín Botánico (RJB-CSIC)MadridSpain
  3. 3.Departamento de Botánica, Instituto Cavanilles de Biodiversidad y Biología Evolutiva, Facultad de Ciencias BiológicasUniversitat de ValènciaBurjassot, ValenciaSpain
  4. 4.Departamento de Ciencias de la VidaUniversidad de AlcaláAlcalá de Henares, MadridSpain

Personalised recommendations