Microbial Ecology

, Volume 79, Issue 1, pp 84–97 | Cite as

Effects of Quorum Quenching on Biofilm Metacommunity in a Membrane Bioreactor

  • So-Yeon Jeong
  • Chung-Hak Lee
  • Taewoo YiEmail author
  • Tae Gwan KimEmail author
Environmental Microbiology


Quorum quenching (QQ) has received attention for the control of biofilms, e.g., biofilms that cause biofouling in membrane bioreactors (MBRs). Despite the efficacy of QQ on biofouling, it is elusive how QQ influences biofilm formation on membranes. A pilot-scale QQ-MBR and non-QQ-MBR were identically operated for 4 days and 8 days to destructively sample the membranes. QQ prolonged the membrane filterability by 43% with no harmful influence on MBR performance. qPCR showed no effect of QQ on microbial density during either of these time periods. Community comparisons revealed that QQ influenced the bacterial and fungal community structures, and the fungal structure corresponded with the bacterial structure. Metacommunity and spatial analyses showed that QQ induced structural variation rather than compositional variation of bacteria and fungi. Moreover, QQ considerably enhanced the bacterial dispersal across membrane during the early development. As the dispersal enhancement by QQ counteracted the ecological drift, it eliminated the distance–decay relationship, reflecting a neutral theory archetype of metacommunity. Network analyses showed that QQ substantially reduced the amount and magnitude of interactions, e.g., competition and cooperation, for bacteria and fungi, and weakened their network structures, irrespective of time. Additionally, QQ suppressed the growth of specific microbial species (e.g., Acinetobacter), abundant and widespread at the early stage. These findings suggest that QQ influenced the community dynamics at the regional and local levels, correspondingly the ecological selection and dispersal processes, during the biofilm development.


Metacommunity Biofilm Quorum quenching Biofouling Membrane bioreactor 


Funding Information

This study was supported by the basic science research program through the National Research Foundation of Korea funded by the Ministry of Education (2018R1D1A1B07048872).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

248_2019_1397_MOESM1_ESM.pdf (399 kb)
ESM 1 (PDF 398 kb)


  1. 1.
    Drews A (2010) Membrane fouling in membrane bioreactors—characterisation, contradictions, cause and cures. J Membr Sci 363:1–28. CrossRefGoogle Scholar
  2. 2.
    Visvanathan C, Aim RB, Parameshwaran K (2000) Membrane separation bioreactors for wastewater treatment. Crit Rev Environ Sci Technol 30:1–48. CrossRefGoogle Scholar
  3. 3.
    Miura Y, Watanabe Y, Okabe S (2007) Membrane biofouling in pilot-scale membrane bioreactors (MBRs) treating municipal wastewater: impact of biofilm formation. Environ Sci Technol 41:632–638. CrossRefPubMedGoogle Scholar
  4. 4.
    Lee S, Park S-K, Kwon H, Lee SH, Lee K, Nahm CH, Jo SJ, Oh H-S, Park P-K, Choo K-H, Lee C-H, Yi T (2016) Crossing the border between laboratory and field: bacterial quorum quenching for anti-biofouling strategy in an MBR. Environ Sci Technol 50:1788–1795. CrossRefPubMedGoogle Scholar
  5. 5.
    Jo SJ, Kwon H, Jeong S-Y, Lee C-H, Kim TG (2016) Comparison of microbial communities of activated sludge and membrane biofilm in 10 full-scale membrane bioreactors. Water Res 101:214–225. CrossRefPubMedGoogle Scholar
  6. 6.
    Malaeb L, Le-Clech P, Vrouwenvelder JS, Ayoub GM, Saikaly PE (2013) Do biological-based strategies hold promise to biofouling control in MBRs? Water Res 47:5447–5463. CrossRefPubMedGoogle Scholar
  7. 7.
    Yeon K-M, Cheong W-S, Oh H-S, Lee W-N, Hwang B-K, Lee C-H, Beyenal H, Lewandowski Z (2009) Quorum sensing: a new biofouling control paradigm in a membrane bioreactor for advanced wastewater treatment. Environ Sci Technol 43:380–385. CrossRefPubMedGoogle Scholar
  8. 8.
    Oh H-S, Yeon K-M, Yang C-S, Kim S-R, Lee C-H, Park SY, Han JY, Lee J-K (2012) Control of membrane biofouling in MBR for wastewater treatment by quorum quenching bacteria encapsulated in microporous membrane. Environ Sci Technol 46:4877–4884. CrossRefPubMedGoogle Scholar
  9. 9.
    Jeong S-Y, Yi T, Lee C-H, Kim TG (2016) Spatiotemporal dynamics and correlation networks of bacterial and fungal communities in a membrane bioreactor. Water Res 105:218–230. CrossRefPubMedGoogle Scholar
  10. 10.
    Luo J, Lv P, Zhang J, Fane AG, McDougald D, Rice SA (2017) Succession of biofilm communities responsible for biofouling of membrane bio-reactors (MBRs). PLoS One 12:e0179855. CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Vellend M (2010) Conceptual synthesis in community ecology. Q Rev Biol 85:183–206CrossRefGoogle Scholar
  12. 12.
    Leibold MA, Holyoak M, Mouquet N, Amarasekare P, Chase JM, Hoopes MF, Holt RD, Shurin JB, Law R, Tilman D, Loreau M, Gonzalez A (2004) The metacommunity concept: a framework for multi-scale community ecology. Ecol Lett 7:601–613. CrossRefGoogle Scholar
  13. 13.
    Leibold MA, Chase JM (2018) Metacommunity ecology. Princeton University PressGoogle Scholar
  14. 14.
    Whiteley M, Diggle SP, Greenberg EP (2017) Progress in and promise of bacterial quorum sensing research. Nature 551:313–320. CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Tan CH, Koh KS, Xie C, Tay M, Zhou Y, Williams R, Ng WJ, Rice SA, Kjelleberg S (2014) The role of quorum sensing signalling in EPS production and the assembly of a sludge community into aerobic granules. ISME J 8:1186–1197. CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Abisado RG, Benomar S, Klaus JR, Dandekar AA, Chandler JR (2018) Bacterial quorum sensing and microbial community interactions. mBio 9:e02331–e02317. CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kim TG, Yi T, Lee E-H, Ryu HW, Cho K-S (2012) Characterization of a methane-oxidizing biofilm using microarray, and confocal microscopy with image and geostatic analyses. Appl Microbiol Biotechnol 95:1051–1059. CrossRefPubMedGoogle Scholar
  18. 18.
    Chase JM, Kraft NJB, Smith KG, Vellend M, Inouye BD (2011) Using null models to disentangle variation in community dissimilarity from variation in α-diversity. Ecosphere 2:1–11. CrossRefGoogle Scholar
  19. 19.
    Jin Y-L, Lee W-N, Lee C-H, Chang I-S, Huang X, Swaminathan T (2006) Effect of DO concentration on biofilm structure and membrane filterability in submerged membrane bioreactor. Water Res 40:2829–2836. CrossRefPubMedGoogle Scholar
  20. 20.
    Andersson S, Kuttuva Rajarao G, Land CJ, Dalhammar G (2008) Biofilm formation and interactions of bacterial strains found in wastewater treatment systems. FEMS Microbiol Lett 283:83–90. CrossRefPubMedGoogle Scholar
  21. 21.
    Clemmer KM, Bonomo RA, Rather PN (2011) Genetic analysis of surface motility in Acinetobacter baumannii. Microbiology 157:2534–2544. CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Deveau A, Bonito G, Uehling J, Paoletti M, Becker M, Bindschedler S, Hacquard S, Hervé V, Labbé J, Lastovetsky OA, Mieszkin S, Millet LJ, Vajna B, Junier P, Bonfante P, Krom BP, Olsson S, van Elsas JD, Wick LY (2018) Bacterial–fungal interactions: ecology, mechanisms and challenges. FEMS Microbiol Rev 42:335–352. CrossRefPubMedGoogle Scholar
  23. 23.
    Hanski I (1982) Dynamics of regional distribution: the core and satellite species hypothesis. Oikos 38:210–221. CrossRefGoogle Scholar
  24. 24.
    Hanski I, Gyllenberg M (1993) Two general metapopulation models and the core-satellite species hypothesis. Am Nat 142:17–41CrossRefGoogle Scholar
  25. 25.
    Freckleton RP, Gill JA, Noble D, Watkinson AR (2005) Large-scale population dynamics, abundance–occupancy relationships and the scaling from local to regional population size. J Anim Ecol 74:353–364. CrossRefGoogle Scholar
  26. 26.
    Hanson CA, Fuhrman JA, Horner-Devine MC, Martiny JBH (2012) Beyond biogeographic patterns: processes shaping the microbial landscape. Nat Rev Microbiol 10:497–506. CrossRefGoogle Scholar
  27. 27.
    Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550. CrossRefPubMedGoogle Scholar
  28. 28.
    Fukami T, Morin PJ (2003) Productivity–biodiversity relationships depend on the history of community assembly. Nature 424:423–426. CrossRefPubMedGoogle Scholar
  29. 29.
    Nemergut DR, Schmidt SK, Fukami T, O’Neill SP, Bilinski TM, Stanish LF, Knelman JE, Darcy JL, Lynch RC, Wickey P, Ferrenberg S (2013) Patterns and processes of microbial community assembly. Microbiol Mol Biol Rev 77:342–356. CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kim TG, Jeong S-Y, Cho K-S (2014) Functional rigidity of a methane biofilter during the temporal microbial succession. Appl Microbiol Biotechnol 98:3275–3286. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MicrobiologyPusan National UniversityPusanRepublic of Korea
  2. 2.School of Chemical and Biological EngineeringSeoul National UniversitySeoulRepublic of Korea
  3. 3.National Institute of EcologySeocheonRepublic of Korea

Personalised recommendations