Advertisement

Bdellovibrio and Like Organisms Are Predictors of Microbiome Diversity in Distinct Host Groups

  • Julia Johnke
  • Sebastian Fraune
  • Thomas C. G. Bosch
  • Ute Hentschel
  • Hinrich SchulenburgEmail author
Note

Abstract

Biodiversity is generally believed to be a main determinant of ecosystem functioning. This principle also applies to the microbiome and could consequently contribute to host health. According to ecological theory, communities are shaped by top predators whose direct and indirect interactions with community members cause stability and diversity. Bdellovibrio and like organisms (BALOs) are a neglected group of predatory bacteria that feed on Gram-negative bacteria and can thereby influence microbiome composition. We asked whether BALOs can predict biodiversity levels in microbiomes from distinct host groups and environments. We demonstrate that genetic signatures of BALOs are commonly found within the 16S rRNA reads from diverse host taxa. In many cases, their presence, abundance, and especially richness are positively correlated with overall microbiome diversity. Our findings suggest that BALOs can act as drivers of microbial alpha-diversity and should therefore be considered candidates for the restoration of microbiomes and the prevention of dysbiosis.

Keywords

Biodiversity Predator Prey Microbiome Bdellovibrio 

Notes

Acknowledgments

We are grateful for advice from members of the Schulenburg group and the Collaborative Research Center CRC1182 on Origin and Function of Metaorganisms.

Funding Information

This work was funded by the CRC1182, projects A4 and B2.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Data Availability

The nucleotide sequence data reported are available in the EMBL databases under the accession number PRJEB30476.

Supplementary material

248_2019_1395_MOESM1_ESM.pdf (483 kb)
ESM 1 (PDF 483 kb)

References

  1. 1.
    Cardinale BJ, Srivastava DS, Duffy JE et al (2006) Effects of biodiversity on the functioning of trophic groups and ecosystems. Nature 443:989–992.  https://doi.org/10.1038/Nature05202 CrossRefGoogle Scholar
  2. 2.
    Boyer KE, Kertesz JS, Bruno JF (2009) Biodiversity effects on productivity and stability of marine macroalgal communities: the role of environmental context. Oikos 118:1062–1072.  https://doi.org/10.1111/j.1600-0706.2009.17252.x CrossRefGoogle Scholar
  3. 3.
    Power ME, Tilman D, Estes JA, Menge BA, Bond WJ, Mills LS, Daily G, Castilla JC, Lubchenco J, Paine RT (1996) Challenges in the quest for keystones. BioScience 46:609–620.  https://doi.org/10.2307/1312990 CrossRefGoogle Scholar
  4. 4.
    Thompson R, Starzomski BM (2007) What does biodiversity actually do? A review for managers and policy makers. Biodivers Conserv 16:1359–1378.  https://doi.org/10.1007/s10531-005-6232-9 CrossRefGoogle Scholar
  5. 5.
    Naeem S, Li SB (1997) Biodiversity enhances ecosystem reliability. Nature 390:507–509.  https://doi.org/10.1038/37348 CrossRefGoogle Scholar
  6. 6.
    Yachi S, Loreau M (1999) Biodiversity and ecosystem productivity in a fluctuating environment: the insurance hypothesis. Proc Natl Acad Sci 96:1463–1468.  https://doi.org/10.1073/pnas.96.4.1463 CrossRefGoogle Scholar
  7. 7.
    Holling CS (1973) Resilience and stability of ecological systems. Annu Rev Ecol Syst 4:1–23.  https://doi.org/10.1146/annurev.es.04.110173.000245 CrossRefGoogle Scholar
  8. 8.
    Thebault E, Loreau M (2003) Food-web constraints on biodiversity-ecosystem functioning relationships. Proc Natl Acad Sci U S A 100:14949–14954.  https://doi.org/10.1073/pnas.2434847100 CrossRefGoogle Scholar
  9. 9.
    Jabiol J, McKie BG, Bruder A et al (2013) Trophic complexity enhances ecosystem functioning in an aquatic detritus-based model system. J Anim Ecol 82:1042–1051.  https://doi.org/10.1111/1365-2656.12079 CrossRefGoogle Scholar
  10. 10.
    Gessner MO, Swan CM, Dang CK, McKie BG, Bardgett RD, Wall DH, Hättenschwiler S (2010) Diversity meets decomposition. Trends Ecol Evol 25:372–380.  https://doi.org/10.1016/j.tree.2010.01.010 CrossRefGoogle Scholar
  11. 11.
    Leitão RP, Zuanon J, Villéger S, Williams SE, Baraloto C, Fortunel C, Mendonça FP, Mouillot D (2016) Rare species contribute disproportionately to the functional structure of species assemblages. Proc R Soc B Biol Sci 283:20160084.  https://doi.org/10.1098/rspb.2016.0084 CrossRefGoogle Scholar
  12. 12.
    Callens M, Watanabe H, Kato Y, Miura J, Decaestecker E (2018) Microbiota inoculum composition affects holobiont assembly and host growth in Daphnia. Microbiome 6:56.  https://doi.org/10.1186/s40168-018-0444-1 CrossRefGoogle Scholar
  13. 13.
    Sockett RE (2009) Predatory lifestyle of Bdellovibrio bacteriovorus. Annu Rev Microbiol 63:523–539.  https://doi.org/10.1146/annurev.micro.091208.073346 CrossRefGoogle Scholar
  14. 14.
    Rotem O, Pasternak Z, Jurkevitch E (2014) Bdellovibrio and like organisms. In: Rosenberg E, DeLong EF, Lory S et al (eds) The prokaryotes. Springer Berlin Heidelberg, Berlin, Heidelberg, pp 3–17CrossRefGoogle Scholar
  15. 15.
    Iebba V, Santangelo F, Totino V, Nicoletti M, Gagliardi A, de Biase RV, Cucchiara S, Nencioni L, Conte MP, Schippa S (2013) Higher prevalence and abundance of Bdellovibrio bacteriovorus in the human gut of healthy subjects. PLoS One 8:e61608.  https://doi.org/10.1371/journal.pone.0061608 CrossRefGoogle Scholar
  16. 16.
    Negus D, Moore C, Baker M, Raghunathan D, Tyson J, Sockett RE (2017) Predator versus pathogen: how does predatory Bdellovibrio bacteriovorus interface with the challenges of killing Gram-negative pathogens in a host setting? Annu Rev Microbiol 71:441–457.  https://doi.org/10.1146/annurev-micro-090816-093618 CrossRefGoogle Scholar
  17. 17.
    Kandel PP, Pasternak Z, van Rijn J, Nahum O, Jurkevitch E (2014) Abundance, diversity and seasonal dynamics of predatory bacteria in aquaculture zero discharge systems. FEMS Microbiol Ecol 89:149–161.  https://doi.org/10.1111/1574-6941.12342 CrossRefGoogle Scholar
  18. 18.
    Chen H, Laws EA, Martin JL et al (2018) Relative contributions of Halobacteriovorax and bacteriophage to bacterial cell death under various environmental conditions. mBio 9:e01202–e01218.  https://doi.org/10.1128/mBio.01202-18 Google Scholar
  19. 19.
    Thomas T, Moitinho-Silva L, Lurgi M, Björk JR, Easson C, Astudillo-García C, Olson JB, Erwin PM, López-Legentil S, Luter H, Chaves-Fonnegra A, Costa R, Schupp PJ, Steindler L, Erpenbeck D, Gilbert J, Knight R, Ackermann G, Victor Lopez J, Taylor MW, Thacker RW, Montoya JM, Hentschel U, Webster NS (2016) Diversity, structure and convergent evolution of the global sponge microbiome. Nat Commun 7:11870.  https://doi.org/10.1038/ncomms11870 CrossRefGoogle Scholar
  20. 20.
    Mortzfeld BM, Urbanski S, Reitzel AM, Künzel S, Technau U, Fraune S (2016) Response of bacterial colonization in Nematostella vectensis to development, environment and biogeography. Environ Microbiol 18:1764–1781.  https://doi.org/10.1111/1462-2920.12926 CrossRefGoogle Scholar
  21. 21.
    Adair KL, Wilson M, Bost A, Douglas AE (2018) Microbial community assembly in wild populations of the fruit fly Drosophila melanogaster. ISME J 12:959–972.  https://doi.org/10.1038/s41396-017-0020-x CrossRefGoogle Scholar
  22. 22.
    Song SJ, Lauber C, Costello EK, Lozupone CA, Humphrey G, Berg-Lyons D, Caporaso JG, Knights D, Clemente JC, Nakielny S, Gordon JI, Fierer N, Knight R (2013) Cohabiting family members share microbiota with one another and with their dogs. eLife 2:e00458.  https://doi.org/10.7554/eLife.00458 CrossRefGoogle Scholar
  23. 23.
    Lax S, Smith DP, Hampton-Marcell J, Owens SM, Handley KM, Scott NM, Gibbons SM, Larsen P, Shogan BD, Weiss S, Metcalf JL, Ursell LK, Vazquez-Baeza Y, van Treuren W, Hasan NA, Gibson MK, Colwell R, Dantas G, Knight R, Gilbert JA (2014) Longitudinal analysis of microbial interaction between humans and the indoor environment. Science 345:1048–1052.  https://doi.org/10.1126/science.1254529 CrossRefGoogle Scholar
  24. 24.
    Franzenburg S, Fraune S, Altrock PM, Künzel S, Baines JF, Traulsen A, Bosch TCG (2013) Bacterial colonization of Hydra hatchlings follows a robust temporal pattern. ISME J 7:781–790.  https://doi.org/10.1038/ismej.2012.156 CrossRefGoogle Scholar
  25. 25.
    Zhang H, John R, Peng Z, Yuan J, Chu C, du G, Zhou S (2012) The relationship between species richness and evenness in plant communities along a successional gradient: a study from sub-alpine meadows of the eastern Qinghai-Tibetan plateau, China. PLoS One 7:e49024.  https://doi.org/10.1371/journal.pone.0049024 CrossRefGoogle Scholar
  26. 26.
    Jurkevitch E, Minz D, Ramati B, Barel G (2000) Prey range characterization, ribotyping, and diversity of soil and rhizosphere Bdellovibrio spp. isolated on phytopathogenic bacteria. Appl Environ Microbiol 66:2365–2371CrossRefGoogle Scholar
  27. 27.
    Gupta S, Tang C, Tran M, Kadouri DE (2016) Effect of predatory bacteria on human cell lines. PLoS One 11:e0161242.  https://doi.org/10.1371/journal.pone.0161242 CrossRefGoogle Scholar
  28. 28.
    Dwidar M, Monnappa AK, Mitchell RJ (2012) The dual probiotic and antibiotic nature of Bdellovibrio bacteriovorus. BMB Rep 45:71–78.  https://doi.org/10.5483/BMBRep.2012.45.2.71 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Evolutionary Ecology and Genetics, Zoological InstituteCAU KielKielGermany
  2. 2.Department of Cell and Developmental Biology, Zoological InstituteCAU KielKielGermany
  3. 3.RD3 Marine MicrobiologyGEOMAR Helmholtz Centre for Ocean Research KielKielGermany
  4. 4.Section of Marine BiologyCAU KielKielGermany

Personalised recommendations