Advertisement

Fungal Community Composition and Potential Depth-Related Driving Factors Impacting Distribution Pattern and Trophic Modes from Epi- to Abyssopelagic Zones of the Western Pacific Ocean

  • Wei Li
  • Mengmeng Wang
  • Gaëtan Burgaud
  • Huaming Yu
  • Lei CaiEmail author
Fungal Microbiology

Abstract

Fungi play an important role in cycling organic matter and nutrients in marine ecosystems. However, the distribution of fungal communities in the ocean, especially the vertical distribution along depth in the water column, remained poorly understood. Here, we assess the depth-related distribution pattern of fungal communities along the water column from epi- to abyssopelagic zones of the Western Pacific Ocean using internal transcribed spacer 2 (ITS2) metabarcoding. Majority of the assigned OTUs were affiliated to Ascomycota, followed by three other minor phyla (Basidiomycota, Chytridiomycota, and Mucoromycota). The epipelagic zone harbored a higher OTU richness with distinct fungal communities as compared with meso-, bathy-, and abyssopelagic zones. Across the whole water column, depth appears as a key parameter for both fungal α- and β-diversity. However, when the dataset was split into the upper (5–500 m) and deeper (below 500 m) layers, no significant correlation was observed between depth and community compositions. In the upper layer, temperature and dissolved oxygen were recognized as the primary environmental factors shaping fungal α- and β- diversity. By parsing fungal OTUs into ecological categories, multi-trophic mode of nutrition was found to be more prevalent with increasing depth, suggesting a potential adaptation to the extreme conditions of the deep sea. This study provides new and meaningful information on the depth-stratified fungal diversity, community structure, and putative ecological roles in the open sea.

Keywords

Open sea Depth Mycobiome Trophic mode Metabarcoding 

Notes

Acknowledgements

The authors would like to thank the anonymous reviewers for their helpful and professional comments. The authors also thank crews of Kexuehao research vessel for their help in collecting samples. This study was supported by the National Key Research and Development Program of China (Project No. 2016YFC1401800) and National Natural Science Foundation of China (Project Nos. 31670012, 31872615). MM Wang acknowledges CAS 153211KYSB20160029 for supporting her postgraduate studentship.

Supplementary material

248_2019_1374_MOESM1_ESM.xlsx (2.1 mb)
ESM 1 (XLSX 2135 kb)
248_2019_1374_MOESM2_ESM.jpg (554 kb)
Fig. S1 (a) Rarefaction curves for each sample informing on the number of OTUs detected depending on the sequencing effort. (b) Accumulation curves of the total OTUs, fungal OTUs observed and Chao1 based on the number of samples. (JPG 554 kb)
248_2019_1374_Fig6_ESM.png (108 kb)
Fig. S2

Relative read abundance of the 12 main taxonomic groups (mainly at the levels of class and phylum) (a) and top 10 genera in different sea zones (b). (PNG 107 kb)

248_2019_1374_MOESM3_ESM.eps (862 kb)
High Resolution Image (EPS 862 kb)
248_2019_1374_MOESM4_ESM.jpg (172 kb)
Fig. S3 Venn diagram of OTU number among different sea zones. (JPG 171 kb)

References

  1. 1.
    Stocker R (2012) Marine microbes see a sea of gradients. Science 338:628–633.  https://doi.org/10.1126/science.1208929 CrossRefGoogle Scholar
  2. 2.
    Lønborg C, Cuevas LA, Reinthaler T, Herndl GJ, Gasol JM, Morán XAG, Bates NR, Álvarez-Salgado XA (2016) Depth dependent relationships between temperature and ocean heterotrophic prokaryotic production. Front. Mar. Sci. 3:90.  https://doi.org/10.3389/fmars.2016.00090 CrossRefGoogle Scholar
  3. 3.
    Fuhrman JA, Cram JA, Needham DM (2015) Marine microbial community dynamics and their ecological interpretation. Nat Rev Microbiol 13:133–146.  https://doi.org/10.1038/nrmicro3417 CrossRefGoogle Scholar
  4. 4.
    Guerrero-Feijóo E, Nieto-Cid M, Sintes E, Dobal-Amador V, Hernando-Morales V, Álvarez M, Balagué V, Varela MM (2017) Optical properties of dissolved organic matter relate to different depth-specific patterns of archaeal and bacterial community structure in the North Atlantic Ocean. FEMS Microbiol Ecol 93:fiw224.  https://doi.org/10.1093/femsec/fiw224 CrossRefGoogle Scholar
  5. 5.
    Ghiglione JF, Conan P, Pujo-Pay M (2009) Diversity of total and active free-living vs. particle-attached bacteria in the euphotic zone of the NW Mediterranean Sea. FEMS Microbiol. Lett. 299:9–21.  https://doi.org/10.1111/j.1574-6968.2009.01694.x CrossRefGoogle Scholar
  6. 6.
    Severin T, Sauret C, Boutrif M, Duhaut T, Kessouri F, Oriol L, Caparros J, Pujo-Pay M, de Madron XD, Garel M, Tamburini C, Conan P, Ghiglione J-F (2016) Impact of an intense water column mixing (0–1500 m) on prokaryotic diversity and activities during an open-ocean convection event in the NW Mediterranean Sea. Environ. Microbiol. 18:4378–4390.  https://doi.org/10.1111/1462-2920.13324 CrossRefGoogle Scholar
  7. 7.
    Frank AH, Garcia JAL, Herndl GJ, Reinthaler T (2016) Connectivity between surface and deep waters determines prokaryotic diversity in the North Atlantic Deep Water. Environ. Microbiol. 18:2052–2063.  https://doi.org/10.1111/1462-2920.13237 CrossRefGoogle Scholar
  8. 8.
    Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, Djahanschiri B, Zeller G, Mende DR, Alberti A, Cornejo-Castillo FM, Costea PI, Cruaud C, d'Ovidio F, Engelen S, Ferrera I, Gasol JM, Guidi L, Hildebrand F, Kokoszka F, Lepoivre C, Lima-Mendez G, Poulain J, Poulos BT, Royo-Llonch M, Sarmento H, Vieira-Silva S, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Tara Oceans coordinators, Bowler C, de Vargas C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Jaillon O, Not F, Ogata H, Pesant S, Speich S, Stemmann L, Sullivan MB, Weissenbach J, Wincker P, Karsenti E, Raes J, Acinas SG, Bork P (2015) Structure and function of the global ocean microbiome. Science 348:1261359.  https://doi.org/10.1126/science.1261359 CrossRefGoogle Scholar
  9. 9.
    Dobal-Amador V, Nieto-Cid M, Guerrero-Feijoo E, Hernando-Morales V, Teira E, Varela-Rozados MM (2016) Vertical stratification of bacterial communities driven by multiple environmental factors in the waters (0-5000 m) off the Galician coast (NW Iberian margin). Deep-Sea Res. 114:1–11.  https://doi.org/10.1016/j.dsr.2016.04.009 CrossRefGoogle Scholar
  10. 10.
    Richards TA, Jones MDM, Leonard G, Bass D (2012) Marine fungi: their ecology and molecular diversity. Annu. Rev. Mar. Sci. 4:495–522.  https://doi.org/10.1146/annurev-marine-120710-100802 CrossRefGoogle Scholar
  11. 11.
    Jones EBG, Suetrong S, Sakayaroj J, Bahkali AH, Abdel-Wahab MA, Boekhout T, Pang KL (2015) Classification of marine Ascomycota, Basidiomycota, Blastocladiomycota and Chytridiomycota. Fungal Divers. 73:1–72.  https://doi.org/10.1007/s13225-015-0339-4 CrossRefGoogle Scholar
  12. 12.
    Rédou V, Ciobanu MC, Pachiadaki MG, Edgcomb V, Alain K, Barbier G, Burgaud G (2014) In-depth analyses of deep subsurface sediments using 454-pyrosequencing reveals a reservoir of buried fungal communities at record-breaking depths. FEMS Microb. Ecol. 90:908–921.  https://doi.org/10.1111/1574-6941.12447 CrossRefGoogle Scholar
  13. 13.
    Gao Z, Johnson ZI, Wang GY (2010) Molecular characterization of the spatial diversity and novel lineages of mycoplankton in Hawaiian coastal waters. ISME J 4:111–120.  https://doi.org/10.1038/Ismej.2009.87 CrossRefGoogle Scholar
  14. 14.
    Picard KT (2017) Coastal marine habitats harbor novel early-diverging fungal diversity. Fungal Ecol. 25:1–13.  https://doi.org/10.1016/j.funeco.2016.10.006 CrossRefGoogle Scholar
  15. 15.
    Li W, Wang MM, Pan HQ, Burgaud G, Liang SK, Guo JJ, Luo T, Li ZX, Zhang SM, Cai L (2018) Highlighting patterns of fungal diversity and composition shaped by ocean currents using the East China Sea as a model. Mol. Ecol. 27:564–576.  https://doi.org/10.1111/mec.14440 CrossRefGoogle Scholar
  16. 16.
    Lai X, Cao L, Tan H, Fang S, Huang Y, Zhou S (2007) Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. ISME J 1:756–762.  https://doi.org/10.1038/ismej.2007.51 CrossRefGoogle Scholar
  17. 17.
    Burgaud G, Arzur D, Durand L, Cambon-Bonavita MA, Barbier G (2010) Marine culturable yeasts in deep-sea hydrothermal vents: species richness and association with fauna. FEMS Microbiol. Ecol. 73:121–133.  https://doi.org/10.1111/j.1574-6941.2010.00881.x Google Scholar
  18. 18.
    Burgaud G, Hué NTM, Arzur D, Coton M, Perrier-Cornet JM, Jebbar M, Barbier G (2015) Effects of hydrostatic pressure on yeasts isolated from deep-sea hydrothermal vents. Res. Microbiol. 166:700–709.  https://doi.org/10.1016/j.resmic.2015.07.005 CrossRefGoogle Scholar
  19. 19.
    Edgcomb VP, Beaudoin D, Gast R, Biddle JF, Teske A (2011) Marine subsurface eukaryotes: the fungal majority. Environ. Microbiol. 13:172–183.  https://doi.org/10.1111/1462-2920.2010.02318.x CrossRefGoogle Scholar
  20. 20.
    Singh P, Raghukumar C, Verma P, Shouche Y (2010) Phylogenetic diversity of culturable fungi from the deep-sea sediments of the Central Indian Basin and their growth characteristics. Fungal Divers. 40:89–102.  https://doi.org/10.1007/s13225-009-0009-5 CrossRefGoogle Scholar
  21. 21.
    Singh P, Raghukumar C, Verma P, Shouche Y (2012) Assessment of fungal diversity in deep-sea sediments by multiple primer approach. World J. Microbiol. Biotechnol. 28:659–667.  https://doi.org/10.1007/s11274-011-0859-3 CrossRefGoogle Scholar
  22. 22.
    Orsi WD, Biddle JF, Edgcomb VP (2013) Deep sequencing of subseafloor eukaryotic rRNA reveals active fungi across marine subsurface provinces. PLoS One 8:e56335.  https://doi.org/10.1371/journal.pone.0056335 CrossRefGoogle Scholar
  23. 23.
    Orsi WD, Edgcomb VP, Christman GD, Biddle JF (2013) Gene expression in the deep biosphere. Nature 499:205–208.  https://doi.org/10.1038/nature12230 CrossRefGoogle Scholar
  24. 24.
    Bochdansky AB, Clouse MA, Herndl GJ (2017) Eukaryotic microbes, principally fungi and labyrinthulomycetes, dominate biomass on bathypelagic marine snow. ISME J 11:362–373.  https://doi.org/10.1038/ismej.2016.113 CrossRefGoogle Scholar
  25. 25.
    Hassett BT, Ducluzeau AL, Collins RE, Gradinger R (2017) Spatial distribution of aquatic marine fungi across the western Arctic and sub-Arctic. Environ. Microbiol. 19:475–484.  https://doi.org/10.1111/1462-2920.13371 CrossRefGoogle Scholar
  26. 26.
    Hassett BT, Gradinger R (2016) Chytrids dominate arctic marine fungal communities. Environ. Microbiol. 18:2001–2009.  https://doi.org/10.1111/1462-2920.13216 CrossRefGoogle Scholar
  27. 27.
    Cleary AC, Søreide JE, Freese D, Niehoff B, Gabrielsen TM (2017) Feeding by Calanus glacialis in a high arctic fjord: potential seasonal importance of alternative prey. ICES J. Mar. Sci. 74:1937–1946.  https://doi.org/10.1093/icesjms/fsx106 CrossRefGoogle Scholar
  28. 28.
    Booth T, Kenkel N (1986) Ecological studies of lignicolous marine fungi: a distribution model based on ordination and classification. In: Moss ST (ed) The biology of marine fungi. Cambridge University Press, Cambridge, pp 297–310Google Scholar
  29. 29.
    Jones EBG (2000) Marine fungi: some factors influencing biodiversity. Fungal Divers. 4:53–73Google Scholar
  30. 30.
    Jeffries TC, Curlevski NJ, Brown MV, Harrison DP, Doblin MA, Petrou K, Ralph PJ, Seymour JR (2016) Partitioning of fungal assemblages across different marine habitats. Env Microbiol Rep 8:235–238.  https://doi.org/10.1111/1758-2229.12373 CrossRefGoogle Scholar
  31. 31.
    Tisthammer KH, Cobian GM, Amend AS (2016) Global biogeography of marine fungi is shaped by the environment. Fungal Ecol. 19:39–46.  https://doi.org/10.1016/j.funeco.2015.09.003 CrossRefGoogle Scholar
  32. 32.
    Reiniger RF, Ross CF (1968) A method of interpolation with application to oceanographic data. Deep-Sea Res. 9:185–193Google Scholar
  33. 33.
    Collins ER, Rocap G, Deming JW (2010) Persistence of bacterial and archaeal communities in sea ice through an Arctic winter. Environ. Microbiol. 12:1828–1841.  https://doi.org/10.1111/j.1462-2920.2010.02179.x CrossRefGoogle Scholar
  34. 34.
    Li W, Wang MM, Wang XG, Cheng XL, Guo JJ, Bian XM, Cai L (2016) Fungal communities in sediments of subtropical Chinese seas as estimated by DNA metabarcoding. Sci. Rep. 6:26528.  https://doi.org/10.1038/srep26528 CrossRefGoogle Scholar
  35. 35.
    White TJ, Bruns TD, Lee SB, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA et al (eds) PCR protocols: a guide to methods and applications. Academic Press, San Diego, pp 315–322Google Scholar
  36. 36.
    Tanner MA, Goebel BM, Dojka MA, Pace NR (1998) Specific ribosomal DNA sequences from diverse environmental settings correlated with experimental contaminants. Appl. Environ. Microbiol. 64:3110–3113Google Scholar
  37. 37.
    Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, Parkhill J, Loman NJ, Walker AW (2014) Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 12:87.  https://doi.org/10.1186/s12915-014-0087-z CrossRefGoogle Scholar
  38. 38.
    Magoč T, Salzberg SL (2011) FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27:2957–2963.  https://doi.org/10.1093/bioinformatics/btr507 CrossRefGoogle Scholar
  39. 39.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Peña AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lozupone CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R (2010) QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7:335–336.  https://doi.org/10.1038/nmeth.f.303 CrossRefGoogle Scholar
  40. 40.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, Van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537–7541.  https://doi.org/10.1128/AEM.01541-09 CrossRefGoogle Scholar
  41. 41.
    Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10:996–998.  https://doi.org/10.1038/nmeth.2604 CrossRefGoogle Scholar
  42. 42.
    Kõljalg U, Nilsson RH, Abarenkov K, Tedersoo L, Taylor AFS, Bahram M, Bates ST, Bruns TD, Bengtsson-Palme J, Callaghan TM, Douglas B, Drenkhan T, Eberhardt U, Dueñas M, Grebenc T, Griffith GW, Hartmann M, Kirk PM, Kohout P, Larsson E, Lindahl BD, Lücking R, Martín MP, Matheny PB, Nguyen NH, Niskanen T, Oja J, Peay KG, Peintner U, Peterson M, Põldmaa K, Saag L, Saar I, Schüßler A, Scott JA, Senés C, Smith ME, Suija A, Taylor DL, Telleria MT, Weiss M, Larsson KH (2013) Towards a unified paradigm for sequence based identification of fungi. Mol. Ecol. 22:5271–5277.  https://doi.org/10.1111/mec.12481 CrossRefGoogle Scholar
  43. 43.
    Nilsson RH, Tedersoo L, Ryberg M, Kristiansson E, Hartmann M, Unterseher M, Porter TM, Bengtsson-Palme J, Walker DM, de Sousa F, Gamper HA, Larsson E, Larsson KH, Kõljalg U, Edgar RC, Abarenkov K (2015) A comprehensive, automatically updated fungal ITS sequence dataset for reference-based chimera control in environmental sequencing efforts. Microbes Environ. 30:145–150.  https://doi.org/10.1264/jsme2.ME14121 CrossRefGoogle Scholar
  44. 44.
    Bengtsson-Palme J, Ryberg M, Hartmann M, Branco S, Wang Z, Godhe A, Wit PD, Sánchez-García M, Ebersberger I, de Sousa F, Amend AS, Jumpponen A, Unterseher M, Kristiansson E, Abarenkov K, Bertrand YJK, Sanli K, Eriksson KM, Vik U, Veldre V, Nilsson RH (2013) Improved software detection and extraction of ITS1 and ITS2 from ribosomal ITS sequences of fungi and other eukaryotes for analysis of environmental sequencing data. Methods Ecol. Evol. 4:914–919.  https://doi.org/10.1111/2041-210X.12073 Google Scholar
  45. 45.
    Rideout JR, He Y, Navas-Molina JA, Walters WA, Ursell LK, Gibbons SM, Chase J, McDonald D, Gonzalez A, Robbins-Pianka A, Clemente JC, Gilbert JA, Huse SM, Zhou HW, Knight R, Caporaso JG (2014) Subsampled open-reference clustering creates consistent, comprehensive OTU definitions and scales to billions of sequences. PeerJ 2:e545.  https://doi.org/10.7717/peerj.545 CrossRefGoogle Scholar
  46. 46.
    Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25:3389–3402.  https://doi.org/10.1093/nar/25.17.3389 CrossRefGoogle Scholar
  47. 47.
    Tedersoo L, Bahram M, Polme S, Koljalg U, Yorou NS, Wijesunder R, Villarreal Ruiz L, Vasco-Palacios AM, Thu PQ, Suija A, Smith ME, Sharp C, Saluveer E, Saitta A, Rosas M, Riit T, Ratkowsky D, Pritsch K, Põldmaa K, Piepenbring M, Phosri C, Peterson M, Parts K, Pärtel K, Otsing E, Nouhra E, Njouonkou AL, Nilsson RH, Morgado LN, Mayor J, May TW, Majuakim L, Lodge DJ, Lee SS, Larsson KH, Kohout P, Hosaka K, Hiiesalu I, Henkel TW, Harend H, Guo LD, Greslebin A, Grelet G, Geml J, Gates G, Dunstan W, Dunk C, Drenkhan R, Dearnaley J, De Kesel A, Dang T, Chen X, Buegger F, Brearley FQ, Bonito G, Anslan S, Abell S, Abarenkov K (2014) Global diversity and geography of soil fungi. Science 346:1256688.  https://doi.org/10.1126/science.1256688 CrossRefGoogle Scholar
  48. 48.
    Tedersoo L, Anslan S, Bahram M, Põlme S, Riit T, Liiv I, Kõljalg U, Kisand V, Nilsson H, Hildebrand F, Bork P, Abarenkov K (2015) Shotgun metagenomes and multiple primer pair-barcode combinations of amplicons reveal biases in metabarcoding analyses of fungi. MycoKeys 10:1–43.  https://doi.org/10.3897/mycokeys.10.4852 CrossRefGoogle Scholar
  49. 49.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naïve Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261–5267.  https://doi.org/10.1128/AEM.00062-07
  50. 50.
    Deshpande V, Wang Q, Greenfield P, Charleston M, Porras-Alfaro A, Kuske CR, Cole JR, Midgley DJ, Tran-Dinh N (2016) Fungal identification using a Bayesian classifier and the Warcup training set of internal transcribed spacer sequences. Mycologia 108:1–5.  https://doi.org/10.3852/14-293 CrossRefGoogle Scholar
  51. 51.
    Xiao X, Liang YT, Zhou S, Zhuang SY, Sun B (2018) Fungal community reveals less dispersal limitation and potentially more connected network than that of bacterial in bamboo forest soils. Mol. Ecol. 27:550–563.  https://doi.org/10.1111/mec.14428 CrossRefGoogle Scholar
  52. 52.
    Nguyen NH, Song ZW, Bates ST, Branco S, Tedersoo L, Menke J, Schilling JS, Kennedy PG (2016) FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 20:241–248.  https://doi.org/10.1016/j.funeco.2015.06.006 CrossRefGoogle Scholar
  53. 53.
    Oksanen J, Blanchet FG, Friendly M, Kindt R, Legendre P, McGlinn D, Minchin PR, O’Hara RB, Sipson GL, Solymos P, Stevens MHH, Szoecs E, Wagner H (2018) Vegan: community ecology package. R package version, 2.5-3. http://CRAN.R-project.org/package=vegan
  54. 54.
    Yandell BS (1997) Practical data analysis for designed experiments. Chapman & Hall, LondonCrossRefGoogle Scholar
  55. 55.
    Wang Y, Sen B, He Y, Xie N, Wang G (2018) Spatiotemporal distribution and assemblages of planktonic fungi in the coastal waters of the Bohai Sea. Front. Microbiol. 9:584.  https://doi.org/10.3389/fmicb.2018.00584 CrossRefGoogle Scholar
  56. 56.
    Lindahl BD, Nilsson RH, Tedersoo L, Abarenkov K, Carlsen T, Kjøller R, Kõljalg U, Pennanen T, Rosendahl S, Stenlid J, Kauserud H (2013) Fungal community analysis by high-throughput sequencing of amplified markers—a user's guide. New Phytol. 199:288–299.  https://doi.org/10.1111/nph.12243 CrossRefGoogle Scholar
  57. 57.
    Nagano Y, Nagahama T (2012) Fungal diversity in deep-sea extreme environments. Fungal Ecol. 5:463–471.  https://doi.org/10.1016/j.funeco.2012.01.004 CrossRefGoogle Scholar
  58. 58.
    Richards TA, Leonard G, Mahé F, del Campo J, Romac S, Jones MDM, Maguire F, Dunthorn M, De Vargas C, Massana R, Chambouvet A (2015) Molecular diversity and distribution of marine fungi across 130 European environmental samples. Proc. R. Soc. B 282:20152243.  https://doi.org/10.1098/rspb.2015.2243 CrossRefGoogle Scholar
  59. 59.
    Pernice MC, Giner CR, Logares R, Perera-Bel J, Acinas SG, Duarte CM, Gasol JM, Massana R (2016) Large variability of bathypelagic microbial eukaryotic communities across the world’s oceans. ISME J 10:945–958.  https://doi.org/10.1038/ismej.2015.170 CrossRefGoogle Scholar
  60. 60.
    Rämä T, Nordén J, Davey ML, Mathiassen GH, Spatafora JW, Kauserud H (2014) Fungi ahoy! Diversity on marine wooden substrata in the high North. Fungal Ecol. 8:46–58.  https://doi.org/10.1016/j.funeco.2013.12.002 CrossRefGoogle Scholar
  61. 61.
    Taylor JD, Cunliffe M (2016) Multi-year assessment of coastal planktonic fungi reveals environmental drivers of diversity and abundance. ISME J 10:2118–2128.  https://doi.org/10.1038/ismej.2016.24 CrossRefGoogle Scholar
  62. 62.
    Xu W, Gong L, Pang KL, Luo ZH (2017) Fungal diversity in deep-sea sediments of a hydrothermal vent system in the Southwest Indian Ridge. Deep-Sea Res. I 131:16–26.  https://doi.org/10.1016/j.dsr.2017.11.001 CrossRefGoogle Scholar
  63. 63.
    Xu W, Pang KL, Luo ZH (2014) High fungal diversity and abundance recovered in the deep-sea sediments of the Pacific Ocean. Microb. Ecol. 68:688–698.  https://doi.org/10.1007/s00248-014-0448-8 CrossRefGoogle Scholar
  64. 64.
    Griffin DW (2007) Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin. Microbiol. Rev. 20:459–477.  https://doi.org/10.1128/CMR.00039-06 CrossRefGoogle Scholar
  65. 65.
    Fröhlich-Nowoisky J, Burrows SM, Xie Z, Engling G, Solomon PA, Fraser MP, Mayol-Bracero OL, Artaxo P, Begerow D, Conrad R, Andreae MO, Després VR, Pöschl U (2012) Biogeography in the air: fungal diversity over land and oceans. Biogeosciences 9:1125–1136.  https://doi.org/10.5194/bg-9-1125-2012 CrossRefGoogle Scholar
  66. 66.
    Damare S, Raghukumar C, Raghukumar S (2006) Fungi in deep-sea sediments of the Central Indian Basin. Deep-Sea Res. 1(53):14–27.  https://doi.org/10.1016/j.dsr.2005.09.005 CrossRefGoogle Scholar
  67. 67.
    Reeb D, Best PB, Botha A, Cloete KJ, Thornton M, Mouton M (2010) Fungi associated with the skin of a southern right whale (Eubalaena australis) from South Africa. Mycology 1:155–162CrossRefGoogle Scholar
  68. 68.
    Jebaraj CS, Raghukumar C, Behnke A, Stoeck T (2010) Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiol. Ecol. 71:399–412.  https://doi.org/10.1111/j.1574-6941.2009.00804.x CrossRefGoogle Scholar
  69. 69.
    Gao Z, Li BL, Zheng CC, Wang GY (2008) Molecular detection of fungal communities in the Hawaiian marine sponges Suberites zeteki and Mycale armata. Appl. Environ. Microbiol. 74:6091–6101.  https://doi.org/10.1128/AEM.01315-08 CrossRefGoogle Scholar
  70. 70.
    Stock A, Breiner HW, Pachiadaki M, Edgcomb V, Filker S, La Cono V, Yakimov MM, Stoeck T (2012) Microbial eukaryote life in the new hypersaline deep-sea basin Thetis. Extremophiles 16:21–34.  https://doi.org/10.1007/s00792-011-0401-4 CrossRefGoogle Scholar
  71. 71.
    Rédou V, Vallet M, Meslet-Cladière L, Kumar A, Pang KL, Pouchus YF, Barbie G, Grovel O, Bertrand S, Prado S, Roullier C, Burgaud G (2016) Marine fungi, p 99–153. In Stal LJ, Cretoiu MA (ed). The marine microbiome. Springer International PublishingGoogle Scholar
  72. 72.
    Hurwitz BL, Bru JR, Sullivan MB (2015) Depth-stratified functional and taxonomic niche specialization in the “core” and “flexible” Pacific Ocean Virome. ISME J 9:472–484.  https://doi.org/10.1038/ismej.2014.143 CrossRefGoogle Scholar
  73. 73.
    Pommier T, Neal PR, Gasol JM, Coll M, Acinas SG, Pedrós-Alió C (2010) Spatial patterns of bacterial richness and evenness in the NW Mediterranean Sea explored by pyrosequencing of the 16S rRNA. Aquat Microbial Ecol 61:221–233.  https://doi.org/10.3354/ame01484 CrossRefGoogle Scholar
  74. 74.
    Wilson B, Müller O, Nordmann E-L, Seuthe L, Bratbak G, Øvreås L (2017) Changes in marine prokaryote composition with season and depth over an Arctic Polar Year. Front. Mar. Sci. 4:95.  https://doi.org/10.3389/fmars.2017.00095 Google Scholar
  75. 75.
    Allen AP, Brown JH, Gillooly JF (2002) Global biodiversity, biochemical kinetics, and the energetic-equivalence rule. Science 297:1545–1548.  https://doi.org/10.1126/science.1072380 CrossRefGoogle Scholar
  76. 76.
    Brown JH, Gillooly JF, Allen AP, Savage VM, West GB (2004) Toward a metabolic theory of ecology. Ecology 85:1771–1789CrossRefGoogle Scholar
  77. 77.
    Pommier T, Canbäck B, Riemann L, Boström KH, Simu K, Lundberg P, Tunlid A, Hagström A (2007) Global patterns of diversity and community structure in marine bacterioplankton. Mol. Ecol. 16:867–880.  https://doi.org/10.1111/j.1365-294X.2006.03189.x CrossRefGoogle Scholar
  78. 78.
    Fuhrman JA, Steele JA, Hewson I, Schwalbach MS, Brown MV, Green JL, Brown JH (2008) A latitudinal diversity gradient in planktonic marine bacteria. PNAS 105:7774–7778.  https://doi.org/10.1073/pnas.0803070105 CrossRefGoogle Scholar
  79. 79.
    Bärlocher F, Boddy L (2016) Aquatic fungal ecology—how does it differ from terrestrial? Fungal Ecol. 19:5–13.  https://doi.org/10.1016/j.funeco.2015.09.001 CrossRefGoogle Scholar
  80. 80.
    Pelve EA, Fontanez K, DeLong EF (2017) Bacterial succession on sinking particles in the ocean’s interior. Front. Microbiol. 8:2269.  https://doi.org/10.3389/FMICB.2017.02269 CrossRefGoogle Scholar
  81. 81.
    Pachiadaki MG, Rédou V, Beaudoin DJ, Burgaud G, Edgcomb VP (2016) Fungal and prokaryotic activities in the marine subsurface biosphere at Peru Margin and Canterbury Basin inferred from RNA-based analyses and microscopy. Front. Microbiol. 7:846.  https://doi.org/10.3389/fmicb.2016.00846 CrossRefGoogle Scholar
  82. 82.
    de Vargas C, Audic S, Henry N, Decelle J, Mahé F, Logares R, Lara E, Berney C, Le Bescot N, Probert I, Carmichael M, Poulain J, Romac S, Colin S, Aury JM, Bittner L, Chaffron S, Dunthorn M, Engelen S, Flegontova O, Guidi L, Horák A, Jaillon O, Lima-Mendez G, Lukeš J, Malviya S, Morard R, Mulot M, Scalco E, Siano R, Vincent F, Zingone A, Dimier C, Picheral M, Searson S, Kandels-Lewis S, Coordinators TO, Acinas SG, Bork P, Bowler C, Gorsky G, Grimsley N, Hingamp P, Iudicone D, Not F, Ogata H, Pesant S, Raes J, Sieracki ME, Speich S, Stemmann L, Sunagawa S, Weissenbach J, Wincker P, Karsenti E (2015) Eukaryotic plankton diversity in the sunlit ocean. Science 348:1261605.  https://doi.org/10.1126/science.1261605 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Wei Li
    • 1
  • Mengmeng Wang
    • 1
    • 2
  • Gaëtan Burgaud
    • 3
  • Huaming Yu
    • 4
    • 5
  • Lei Cai
    • 2
    Email author
  1. 1.College of Marine Life SciencesOcean University of ChinaQingdaoChina
  2. 2.State Key Laboratory of Mycology, Institute of MicrobiologyChinese Academy of SciencesBeijingChina
  3. 3.Université de Brest, EA 3882, Laboratoire Universitaire de Biodiversité et Ecologie MicrobienneESIABPlouzanéFrance
  4. 4.College of Oceanic and Atmospheric SciencesOcean University of ChinaQingdaoChina
  5. 5.Key Laboratory of Physical OceanographyMOEQingdaoChina

Personalised recommendations