Advertisement

Microbial Ecology

, Volume 78, Issue 4, pp 895–903 | Cite as

Effect of Composting Under Semipermeable Film on the Sewage Sludge Virome

  • Tatiana Robledo-Mahón
  • Gloria Andrea Silva-Castro
  • Urška Kuhar
  • Urška Jamnikar-Ciglenečki
  • Darja Barlič-Maganja
  • Elisabet Aranda
  • Concepción CalvoEmail author
Environmental Microbiology

Abstract

The addition of compost from sewage sludge to soils represents a sustainable option from an environmental and economic point of view, which involves the valorisation of these wastes. However, before their use as a soil amendment, compost has to reach the quality levels according to the normative, including microbial parameters. Viruses are not included in this regulation and they can produce agricultural problems and human diseases if the compost is not well sanitised. In this study, we carried out the analysis of the viral populations during a composting process with sewage sludge at an industrial scale, using semipermeable cover technology. Viral community was characterised by the presence of plant viruses and bacteriophages of enteric bacteria. The phytopathogen viruses were the group with the highest relative abundance in the sewage sludge sample and at 70 days of the composting process. The diversity of bacterial viruses and their specificity, with respect to the more abundant bacterial taxa throughout the process, highlights the importance of the interrelations between viral and bacterial communities in the control of pathogenic communities. These results suggest the possibility of using them as a tool to predict the effectiveness of the process.

Keywords

Composting process Virome Sewage sludge Electron microscopy Ion torrent 

Notes

Acknowledgments

The authors would like to acknowledge the Environmental Microbiology Research Group [RNM-270] of the University of Granada (Spain).

Funding Information

This research was conducted with funding from Junta de Andalucía [Research project RNM-7370]. E. A. would like to thank the Ministry of Economy and Competitiveness (MINECO) and European Regional Development Fund (ERDF) funds [RYC-2013-12481]. We acknowledge financial support from the Slovenian Research Agency (research core funding no. P4-0092).

References

  1. 1.
    Bhatia A, Madan S, Sahoo J, Ali M, Pathania R, Kazmi AA (2013) Diversity of bacterial isolates during full scale rotary drum composting. Waste Manag 33:1595–1601.  https://doi.org/10.1016/j.wasman.2013.03.019 CrossRefPubMedGoogle Scholar
  2. 2.
    He Y, Xie K, Xu P, Huang X, Gu W, Zhang F, Tang S (2013) Evolution of microbial community diversity and enzymatic activity during composting. Res Microbiol 164:189–198.  https://doi.org/10.1016/j.resmic.2012.11.001 CrossRefPubMedGoogle Scholar
  3. 3.
    Karadag D, Özkaya B, Ölmez E, Nissilä ME, Çakmakçı M, Yıldız Ş, Puhakka JA (2013) Profiling of bacterial community in a full-scale aerobic composting plant. Int Biodeterior Biodegrad 77:85–90.  https://doi.org/10.1016/j.ibiod.2012.10.011 CrossRefGoogle Scholar
  4. 4.
    López-González JA, Vargas-García Mdel C, López MJ, Vargas-García MC, López MJ, Suárez-Estrella F, Jurado M, Moreno J (2014) Enzymatic characterization of microbial isolates from lignocellulose waste composting: chronological evolution. J Environ Manag 145:137–146.  https://doi.org/10.1016/j.jenvman.2014.06.019 CrossRefGoogle Scholar
  5. 5.
    Antunes LP, Martins LF, Pereira RV, Thomas AM, Barbosa D, Lemos LN, Silva GMM, Moura LMS, Epamino GWC, Digiampietri LA, Lombardi KC, Ramos PL, Quaggio RB, de Oliveira JCF, Pascon RC, Cruz JB, da Silva AM, Setubal JC (2016) Microbial community structure and dynamics in thermophilic composting viewed through metagenomics and metatranscriptomics. Sci Rep 6.  https://doi.org/10.1038/srep38915
  6. 6.
    Neher DA, Weicht TR, Bates ST, Leff JW, Fierer N (2013) Changes in bacterial and fungal communities across compost recipes, preparation methods, and composting times. PLoS One 8:e79512.  https://doi.org/10.1371/journal.pone.0079512 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Benito M, Masaguer A, Moliner A, Arrigo N, Palma RM, Effron D (2005) Evaluation of maturity and stability of pruning waste compost and their effect on carbon and nitrogen mineralization in soil. Soil Sci 170:360–370.  https://doi.org/10.1097/01.ss.0000169909.87237.c5 CrossRefGoogle Scholar
  8. 8.
    Mondini C, Fornasier F, Sinicco T (2004) Enzymatic activity as a parameter for the characterization of the composting process. Soil Biol Biochem 36:1587–1594.  https://doi.org/10.1016/j.soilbio.2004.07.008 CrossRefGoogle Scholar
  9. 9.
    Nikaeen M, Nafez AH, Bina B, Nabavi BBF, Hassanzadeh A (2015) Respiration and enzymatic activities as indicators of stabilization of sewage sludge composting. Waste Manag 39:104–110.  https://doi.org/10.1016/j.wasman.2015.01.028 CrossRefPubMedGoogle Scholar
  10. 10.
    Tiquia SM (2005) Microbiological parameters as indicators of compost maturity. J Appl Microbiol 99:816–828.  https://doi.org/10.1111/j.1365-2672.2005.02673.x CrossRefPubMedGoogle Scholar
  11. 11.
    Cai L, Chen T-B, Gao D, Yu J (2016) Bacterial communities and their association with the bio-drying of sewage sludge. Water Res 90:44–51.  https://doi.org/10.1016/j.watres.2015.12.026 CrossRefPubMedGoogle Scholar
  12. 12.
    De Gannes V, Eudoxie G, Hickey WJ (2013) Insights into fungal communities in composts revealed by 454-pyrosequencing: implications for human health and safety. Front Microbiol 4.  https://doi.org/10.3389/fmicb.2013.00164
  13. 13.
    Piceno YM, Pecora-Black G, Kramer S, Roy M, Reid FC, Dubinsky EA, Andersen GL (2017) Bacterial community structure transformed after thermophilically composting human waste in Haiti. PLoS One 12:e0177626.  https://doi.org/10.1371/journal.pone.0177626 CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Langarica-Fuentes A, Zafar U, Heyworth A, Brown T, Fox G, Robson GD (2014) Fungal succession in an in-vessel composting system characterized using 454 pyrosequencing. FEMS Microbiol Ecol 88:296–308.  https://doi.org/10.1111/1574-6941.12293 CrossRefPubMedGoogle Scholar
  15. 15.
    Wang K, Mao H, Li X (2018) Functional characteristics and influence factors of microbial community in sewage sludge composting with inorganic bulking agent. Bioresour Technol 249:527–535.  https://doi.org/10.1016/j.biortech.2017.10.034 CrossRefPubMedGoogle Scholar
  16. 16.
    Simmonds P, Adams MJ, Benkő M, Breitbart M, Brister JR, Carstens EB, Davison AJ, Delwart E, Gorbalenya AE, Harrach B, Hull R, King AMQ, Koonin EV, Krupovic M, Kuhn JH, Lefkowitz EJ, Nibert ML, Orton R, Roossinck MJ, Sabanadzovic S, Sullivan MB, Suttle CA, Tesh RB, van der Vlugt RA, Varsani A, Zerbini FM (2017) Consensus statement: virus taxonomy in the age of metagenomics. Nat Rev Microbiol 15:161–168.  https://doi.org/10.1038/nrmicro.2016.177 CrossRefPubMedGoogle Scholar
  17. 17.
    Karyna R, Christina N, Wei LY et al (2009) Metagenomic analysis of viruses in reclaimed water. Environ Microbiol 11:2806–2820.  https://doi.org/10.1111/j.1462-2920.2009.01964.x CrossRefGoogle Scholar
  18. 18.
    Bibby K, Peccia J (2013) Identification of viral pathogen diversity in sewage sludge by metagenome analysis. Environ Sci Technol 47:1945–1951.  https://doi.org/10.1021/es305181x CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Bibby K, Viau E, Peccia J (2011) Viral metagenome analysis to guide human pathogen monitoring in environmental samples. Lett Appl Microbiol 52:386–392.  https://doi.org/10.1111/j.1472-765X.2011.03014.x CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Heringa SD, Kim J, Jiang X, Doyle MP, Erickson MC (2010) Use of a mixture of bacteriophages for biological control of Salmonella enterica strains in compost. Appl Environ Microbiol 76:5327–5332.  https://doi.org/10.1128/AEM.00075-10 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    González I, Robledo-Mahón T, Rodríguez-Calvo A et al (2016) Evolution of the composting process with semi-permeable film technology at industrial scale. J Clean Prod 115:245–254.  https://doi.org/10.1016/j.jclepro.2015.12.033 CrossRefGoogle Scholar
  22. 22.
    Robledo-Mahón T, Aranda E, Pesciaroli C, Rodríguez-Calvo A, Silva-Castro GA, González-López J, Calvo C (2018) Effect of semi-permeable cover system on the bacterial diversity during sewage sludge composting. J Environ Manag 215:57–67.  https://doi.org/10.1016/j.jenvman.2018.03.041 CrossRefGoogle Scholar
  23. 23.
    Conceição-Neto N, Zeller M, Lefrère H, de Bruyn P, Beller L, Deboutte W, Yinda CK, Lavigne R, Maes P, Ranst MV, Heylen E, Matthijnssens J (2015) Modular approach to customise sample preparation procedures for viral metagenomics: a reproducible protocol for virome analysis. Sci Rep 5.  https://doi.org/10.1038/srep16532
  24. 24.
    Fierer N, Breitbart M, Nulton J, Salamon P, Lozupone C, Jones R, Robeson M, Edwards RA, Felts B, Rayhawk S, Knight R, Rohwer F, Jackson RB (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, Archaea, fungi, and viruses in soil. Appl Environ Microbiol 73:7059–7066.  https://doi.org/10.1128/AEM.00358-07 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Hjelmsø MH, Hellmér M, Fernandez-Cassi X, Timoneda N, Lukjancenko O, Seidel M, Elsässer D, Aarestrup FM, Löfström C, Bofill-Mas S, Abril JF, Girones R, Schultz AC (2017) Evaluation of methods for the concentration and extraction of viruses from sewage in the context of metagenomic sequencing. PLoS One 12:e0170199.  https://doi.org/10.1371/journal.pone.0170199 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Huson DH, Beier S, Flade I, Górska A, el-Hadidi M, Mitra S, Ruscheweyh HJ, Tappu R (2016) MEGAN community edition - interactive exploration and analysis of large-scale microbiome sequencing data. PLoS Comput Biol 12:e1004957.  https://doi.org/10.1371/journal.pcbi.1004957 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Ondov BD, Bergman NH, Phillippy AM (2011) Interactive metagenomic visualization in a web browser. BMC Bioinformatics 12(385).  https://doi.org/10.1186/1471-2105-12-385
  28. 28.
    Cantalupo PG, Calgua B, Zhao G, Hundesa A, Wier AD, Katz JP, Grabe M, Hendrix RW, Girones R, Wang D, Pipas JM (2011) Raw sewage harbors diverse viral populations. mBio 2:e00180–e00111.  https://doi.org/10.1128/mBio.00180-11 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Alhamlan FS, Ederer MM, Brown CJ, Coats ER, Crawford RL (2013) Metagenomics-based analysis of viral communities in dairy lagoon wastewater. J Microbiol Methods 92:183–188.  https://doi.org/10.1016/j.mimet.2012.11.016 CrossRefPubMedGoogle Scholar
  30. 30.
    Colombet J, Robin A, Lavie L, Bettarel Y, Cauchie HM, Sime-Ngando T (2007) Virioplankton ‘pegylation’: use of PEG (polyethylene glycol) to concentrate and purify viruses in pelagic ecosystems. J Microbiol Methods 71:212–219.  https://doi.org/10.1016/j.mimet.2007.08.012 CrossRefPubMedGoogle Scholar
  31. 31.
    Sidhu JPS, Ahmed W, Palmer A, Smith K, Hodgers L, Toze S (2017) Optimization of sampling strategy to determine pathogen removal efficacy of activated sludge treatment plant. Environ Sci Pollut Res Int 24:19001–19010.  https://doi.org/10.1007/s11356-017-9557-5 CrossRefPubMedGoogle Scholar
  32. 32.
    Darzi E, Smith E, Shargil D, Lachman O, Ganot L, Dombrovsky A (2017) The honeybee Apis mellifera contributes to cucumber green mottle mosaic virus spread via pollination. Plant Pathol 67:244–251.  https://doi.org/10.1111/ppa.12702 CrossRefGoogle Scholar
  33. 33.
    Hamza IA, Jurzik L, Uberla K, Wilhelm M (2011) Evaluation of pepper mild mottle virus, human picobirnavirus and torque teno virus as indicators of fecal contamination in river water. Water Res 45:1358–1368.  https://doi.org/10.1016/j.watres.2010.10.021 CrossRefPubMedGoogle Scholar
  34. 34.
    Kuroda K, Nakada N, Hanamoto S, Inaba M, Katayama H, Do AT, Nga TTV, Oguma K, Hayashi T, Takizawa S (2015) Pepper mild mottle virus as an indicator and a tracer of fecal pollution in water environments: comparative evaluation with wastewater-tracer pharmaceuticals in Hanoi, Vietnam. Sci Total Environ 506–507:287–298.  https://doi.org/10.1016/j.scitotenv.2014.11.021 CrossRefPubMedGoogle Scholar
  35. 35.
    Breitbart M, Salamon P, Andresen B, Mahaffy JM, Segall AM, Mead D, Azam F, Rohwer F (2002) Genomic analysis of uncultured marine viral communities. Proc Natl Acad Sci U S A 99:14250–14255.  https://doi.org/10.1073/pnas.202488399 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tatiana Robledo-Mahón
    • 1
    • 2
  • Gloria Andrea Silva-Castro
    • 1
    • 2
  • Urška Kuhar
    • 3
  • Urška Jamnikar-Ciglenečki
    • 4
  • Darja Barlič-Maganja
    • 5
  • Elisabet Aranda
    • 1
    • 2
  • Concepción Calvo
    • 1
    • 2
    Email author
  1. 1.Institute of Water Research, Department of MicrobiologyUniversity of GranadaGranadaSpain
  2. 2.Department of Microbiology, Pharmacy FacultyUniversity of GranadaGranadaSpain
  3. 3.Institute of Microbiology and Parasitology, Veterinary FacultyUniversity of LjubljanaLjubljanaSlovenia
  4. 4.Institute of Food safety, Feed and Environment, Veterinary FacultyUniversity of LjubljanaLjubljanaSlovenia
  5. 5.Faculty of Health SciencesUniversity of PrimorskaIzolaSlovenia

Personalised recommendations