Advertisement

Lower Respiratory Tract Microbiome and Resistome of Bovine Respiratory Disease Mortalities

  • Cassidy L. Klima
  • Devin B. Holman
  • Brenda J. Ralston
  • Kim Stanford
  • Rahat Zaheer
  • Trevor W. Alexander
  • Tim A. McAllisterEmail author
Environmental Microbiology

Abstract

Bovine respiratory disease (BRD) continues to be a serious health problem in beef cattle production. A multifactorial condition, BRD encompasses several types of pneumonia that are associated with multiple viral and bacterial agents. Comprehensive identification of microbes associated with BRD fatalities could enhance our understanding of the range of pathogens that contribute to the disease and identify new therapeutic targets. This study used metagenomic analysis to describe the lower respiratory tract microbiome and resistome of 15 feedlot cattle BRD and 3 non-BRD mortalities along with any affiliated integrative and conjugative elements (ICEs). Known bacterial pathogens associated with BRD, including Histophilus somni, Mannheimia haemolytica, and Mycoplasma bovis, were relatively abundant (> 5%) in most, but not all samples. Other relatively abundant genera (> 1%) included Acinetobacter, Bacillus, Bacteroides, Clostridium, Enterococcus, and Pseudomonas. Antimicrobial resistance genes (ARGs) comprised up to 0.5% of sequences and many of these genes were associated with ICEs previously described within the Pasteurellaceae family. A total of 20 putative ICEs were detected among 16 samples. These results document the wide diversity of microorganisms in the lower respiratory tract of cattle that have succumbed to BRD. The data also strongly suggest that antimicrobial-resistant Pasteurellaceae strains are prevalent in BRD cases in Alberta and that the resistance observed is associated with ICEs. The presence of ICEs harboring a wide array of ARGs holds significant consequence for the effectiveness of drug therapies for the control of BRD in beef cattle.

Keywords

Integrative and conjugative elements Bovine respiratory disease Metagenomics Feedlot cattle Microbiome Antimicrobial resistance 

Notes

Acknowledgements

We thank Susanne Trapp and Yidong Graham for technical support and Nicole Ricker and Adina Howe for scripts used to count BLAST hits for the ARGs and ICEs.

Funding Information

This work was supported by the Agriculture and Agri-Food Canada Growing Forward II, the Government of Canada Genomic Research and Development Initiative, and by a grant provided by the Alberta Livestock and Meat Agency to investigate ICE elements associated with BRD.

Compliance with Ethical Standards

Samples were only collected from cattle that had naturally succumbed to bovine respiratory disease, so no animal care approval was required.

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary material

248_2019_1361_MOESM1_ESM.xlsx (19 kb)
ESM 1 (XLSX 19 kb)
248_2019_1361_Fig1_ESM.png (252 kb)
ESM 2

(PNG 251 kb)

248_2019_1361_MOESM2_ESM.TIFF
High Resolution Image (TIFF 445 kb)

References

  1. 1.
    Duff GC, Galyean ML (2007) Board-invited review: recent advances in management of highly stressed, newly received feedlot cattle. J Anim Sci 85:823–840.  https://doi.org/10.2527/jas.2006-501 CrossRefGoogle Scholar
  2. 2.
    Griffin D, Chengappa MM, Kuszak J, McVey DS (2010) Bacterial pathogens of the bovine respiratory disease complex. Vet Clin North Am Food Anim Pract 26:381–394.  https://doi.org/10.1016/j.cvfa.2010.04.004 CrossRefGoogle Scholar
  3. 3.
    Taylor JD, Fulton RW, Lehenbauer TW, Step DL, Confer AW (2010) The epidemiology of bovine respiratory disease: what is the evidence for predisposing factors? Can Vet J 51:1095PubMedCentralGoogle Scholar
  4. 4.
    Holman DB, Timsit E, Alexander TW (2015) The nasopharyngeal microbiota of feedlot cattle. Sci Rep 5:15557.  https://doi.org/10.1038/srep15557 CrossRefPubMedCentralGoogle Scholar
  5. 5.
    Holman DB, Timsit E, Amat S, Abbott DW, Buret AG, Alexander TW (2017) The nasopharyngeal microbiota of beef cattle before and after transport to a feedlot. BMC Microbiol 17:70.  https://doi.org/10.1186/s12866-017-0978-6 CrossRefPubMedCentralGoogle Scholar
  6. 6.
    Booker CW, Abutarbush SM, Morley PS, Jim GK, Pittman TJ, Schunicht OC, Perrett T, Wildman BK, Fenton RK, Guichon PT, Janzen ED (2008) Microbiological and histopathological findings in cases of fatal bovine respiratory disease of feedlot cattle in Western Canada. Can Vet J 49:473–481PubMedCentralGoogle Scholar
  7. 7.
    Klima CL, Zaheer R, Cook SR, Booker CW, Hendrick S, Alexander TW, McAllister TA (2014) Pathogens of bovine respiratory disease in north American feedlots conferring multidrug resistance via integrative conjugative elements. J Clin Microbiol 52:438–448.  https://doi.org/10.1128/JCM.02485-13 CrossRefPubMedCentralGoogle Scholar
  8. 8.
    Lubbers BV, Hanzlicek GA (2013) Antimicrobial multidrug resistance and coresistance patterns of Mannheimia haemolytica isolated from bovine respiratory disease cases—a three-year (2009–2011) retrospective analysis. J Vet Diagn Investig 25:413–417.  https://doi.org/10.1177/1040638713485227 CrossRefGoogle Scholar
  9. 9.
    Anholt RM, Klima C, Allan N, Matheson-Bird H, Schatz C, Ajitkumar P, Otto S, Peters D, Schmid K, Olson M (2017) Antimicrobial susceptibility of bacteria that cause bovine respiratory disease complex in Alberta, Canada. Front Vet Sci 4:207.  https://doi.org/10.3389/fvets.2017.0020 CrossRefPubMedCentralGoogle Scholar
  10. 10.
    Clawson ML, Murray RW, Sweeney MT, Apley MD, DeDonder KD, Capik SF, Larson RL, Lubbers BV, White BJ, Kalbfleisch TS (2016) Genomic signatures of Mannheimia haemolytica that associate with the lungs of cattle with respiratory disease, an integrative conjugative element, and antibiotic resistance genes. BMC Genomics 17:982CrossRefPubMedCentralGoogle Scholar
  11. 11.
    Michael GB, Eidam C, Kadlec K, Meyer K, Sweeney MT, Murray RW, Watts JL, Schwarz S (2012) Increased MICs of gamithromycin and tildipirosin in the presence of the genes erm(42) and msr(E)-mph(E) for bovine Pasteurella multocida and Mannheimia haemolytica. J Antimicrob Chemother 67:1555–1557.  https://doi.org/10.1093/jac/dks076 CrossRefGoogle Scholar
  12. 12.
    Klima CL, Cook SR, Zaheer R, Laing C, Gannon VP, Xu Y, Rasmussen J, Potter A, Hendrick S, Alexander TW, McAllister TA (2016) Comparative genomic analysis of Mannheimia haemolytica from bovine sources. PLoS One 11:e0149520.  https://doi.org/10.1371/journal.pone.0149520 CrossRefPubMedCentralGoogle Scholar
  13. 13.
    Beukers AG, Zaheer R, Goji N, Amoako KK, Chaves AV, Ward MP, McAllister TA (2017) Comparative genomics of Enterococcus spp. isolated from bovine feces. BMC Microbiol 17:52.  https://doi.org/10.1186/s12866-017-0962-1 CrossRefPubMedCentralGoogle Scholar
  14. 14.
    Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120.  https://doi.org/10.1093/bioinformatics/btu170 CrossRefPubMedCentralGoogle Scholar
  15. 15.
    Langmead B, Salzberg SL (2012) Fast gapped-read alignment with bowtie 2. Nat Methods 9:357–359.  https://doi.org/10.1038/nmeth.1923 CrossRefPubMedCentralGoogle Scholar
  16. 16.
    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing (2009) The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079.  https://doi.org/10.1093/bioinformatics/btp352 CrossRefPubMedCentralGoogle Scholar
  17. 17.
    Quinlan AR, Hall IM (2010) BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26:841–842.  https://doi.org/10.1093/bioinformatics/btq033 CrossRefPubMedCentralGoogle Scholar
  18. 18.
    Menzel P, Ng KL, Krogh A (2016) Fast and sensitive taxonomic classification for metagenomics with Kaiju. Nat Commun 7:11257.  https://doi.org/10.1038/ncomms11257 CrossRefPubMedCentralGoogle Scholar
  19. 19.
    Li D, Liu CM, Luo R, Sadakane K, Lam TW (2015) MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics 31:1674–1676.  https://doi.org/10.1093/bioinformatics/btv033 CrossRefGoogle Scholar
  20. 20.
    Kang DD, Froula J, Egan R, Wang Z (2015) MetaBAT, an efficient tool for accurately reconstructing single genomes from complex microbial communities. PeerJ 3:e1165.  https://doi.org/10.7717/peerj.1165 CrossRefPubMedCentralGoogle Scholar
  21. 21.
    Parks DH, Imelfort M, Skennerton CT, Hugenholtz P, Tyson GW (2015) CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25:1043–1055.  https://doi.org/10.1101/gr.186072.114 CrossRefPubMedCentralGoogle Scholar
  22. 22.
    Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden TL (2009) BLAST+: architecture and applications. BMC Bioinformatics 10:421.  https://doi.org/10.1186/1471-2105-10-421 CrossRefPubMedCentralGoogle Scholar
  23. 23.
    Lakin SM, Dean C, Noyes NR, Dettenwanger A, Ross AS, Doster E, Rovira P, Abdo Z, Jones KL, Ruiz J, Belk KE, Morley PS, Boucher C (2017) MEGARes: an antimicrobial resistance database for high throughput sequencing. Nucleic Acids Res 45:D574–D580.  https://doi.org/10.1093/nar/gkw1009 CrossRefGoogle Scholar
  24. 24.
    Bi D, Xu Z, Harrison EM, Tai C, Wei Y, He X, Jia S, Deng Z, Rajakumar K, Ou H-Y (2011) ICEberg: a web-based resource for integrative and conjugative elements found in Bacteria. Nucleic Acids Res 40:D621–D626.  https://doi.org/10.1093/nar/gkr84 CrossRefPubMedCentralGoogle Scholar
  25. 25.
    Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780.  https://doi.org/10.1093/molbev/mst010 CrossRefPubMedCentralGoogle Scholar
  26. 26.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874.  https://doi.org/10.1093/molbev/msw054 CrossRefGoogle Scholar
  27. 27.
    Holman DB, Klima CL, Ralston BJ, Niu YD, Stanford K, Alexander TW, McAllister TA (2017) Metagenomic sequencing of bronchoalveolar lavage samples from feedlot cattle mortalities associated with bovine respiratory disease. Genome Announc 5:e01045–e01017.  https://doi.org/10.1128/genomeA.01045-17 CrossRefPubMedCentralGoogle Scholar
  28. 28.
    Rice JA, Carrasco-Medina L, Hodgins DC, Shewen PE (2007) Mannheimia haemolytica and bovine respiratory disease. Anim Health Res Rev 8:117–128.  https://doi.org/10.1017/S1466252307001375 CrossRefGoogle Scholar
  29. 29.
    Gaeta NC, Lima SF, Teixeira AG, Ganda EK, Oikonomou G, Gregory L, Bicalho RC (2017) Deciphering upper respiratory tract microbiota complexity in healthy calves and calves that develop respiratory disease using shotgun metagenomics. J Dairy Sci 100:1445–1458.  https://doi.org/10.3168/jds.2016-11522 CrossRefGoogle Scholar
  30. 30.
    Lima SF, Teixeira AG, Higgins CH, Lima FS, Bicalho RC (2016) The upper respiratory tract microbiome and its potential role in bovine respiratory disease and otitis media. Sci Rep 6:29050.  https://doi.org/10.1038/srep29050 CrossRefPubMedCentralGoogle Scholar
  31. 31.
    Welsh RD, Dye LB, Payton ME, Confer AW (2004) Isolation and antimicrobial susceptibilities of bacterial pathogens from bovine pneumonia: 1994–2002. J Vet Diagn Investig 16:426–431CrossRefGoogle Scholar
  32. 32.
    Gagea MI, Bateman KG, van Dreumel T, McEwen BJ, Carman S, Archambault M, Shanahan RA, Caswell JL (2006) Diseases and pathogens associated with mortality in Ontario beef feedlots. J Vet Diagn Investig 18:18–28.  https://doi.org/10.1177/104063870601800104 CrossRefGoogle Scholar
  33. 33.
    Zaheer R, Cook S, Klima C, Stanford K, Alexander T, Topp E, Read R, Mcallister T (2013) Effect of subtherapeutic vs. therapeutic administration of macrolides on antimicrobial resistance in Mannheimia haemolytica and enterococci isolated from beef cattle. Front Microbiol 4:133CrossRefPubMedCentralGoogle Scholar
  34. 34.
    Zeineldin MM, Lowe JF, Grimmer ED, Godoy MR, Ghanem MM, El-Raof YMA, Aldridge BM (2017) Relationship between nasopharyngeal and bronchoalveolar microbial communities in clinically healthy feedlot cattle. BMC Microbiol 17:138.  https://doi.org/10.1186/s12866-017-1042-2 CrossRefPubMedCentralGoogle Scholar
  35. 35.
    Jain S, Self WH, Wunderink RG, Fakhran S, Balk R, Bramley AM, Reed C, Grijalva CG, Anderson EJ, Courtney DM (2015) Community-acquired pneumonia requiring hospitalization among US adults. New Engl J Med 373:415–427CrossRefGoogle Scholar
  36. 36.
    Tetz V, Tetz G (2017) Draft genome sequence of Bacillus respiratorii VT-16-64, isolated from the bronchiolar alveolar lavage fluid of a patient with chronic obstructive pulmonary disease. Genome Announc 5:e00264-00217Google Scholar
  37. 37.
    Rubin JE, Costa MO, Hill JE, Kittrell HE, Fernando C, Huang Y, O’Connor B, Harding JC (2013) Reproduction of mucohaemorrhagic diarrhea and colitis indistinguishable from swine dysentery following experimental inoculation with “Brachyspira hampsonii” strain 30446. PLoS One 8:e57146CrossRefPubMedCentralGoogle Scholar
  38. 38.
    Thomas A, Ball H, Dizier I, Trolin A, Bell C, Mainil J, Linden A (2002) Isolation of Mycoplasma species from the lower respiratory tract of healthy cattle and cattle with respiratory disease in Belgium. Vet Rec 151:472–476.  https://doi.org/10.1136/vr.151.16.472 CrossRefGoogle Scholar
  39. 39.
    Autio T, Pohjanvirta T, Holopainen R, Rikula U, Pentikainen J, Huovilainen A, Rusanen H, Soveri T, Sihvonen L, Pelkonen S (2007) Etiology of respiratory disease in non-vaccinated, non-medicated calves in rearing herds. Vet Microbiol 119:256–265.  https://doi.org/10.1016/j.vetmic.2006.10.001 CrossRefGoogle Scholar
  40. 40.
    Scales BS, Erb-Downward JR, Falkowski NR, LiPuma JJ, Huffnagle GB (2018) Genome sequences of 12 Pseudomonas lundensis strains isolated from the lungs of humans. Genome Announc 6:e01461–e01417.  https://doi.org/10.1128/genomeA.01461-17 CrossRefPubMedCentralGoogle Scholar
  41. 41.
    Stanborough T, Fegan N, Powell SM, Singh T, Tamplin M, Chandry PS (2018) Genomic and metabolic characterization of spoilage-associated Pseudomonas species. Int J Food Microbiol 268:61–72.  https://doi.org/10.1016/j.ijfoodmicro.2018.01.005 CrossRefGoogle Scholar
  42. 42.
    Noyes N, Benedict K, Gow S, Waldner C, Reid-Smith R, Booker C, McAllister T, Morley P (2016) Modelling considerations in the analysis of associations between antimicrobial use and resistance in beef feedlot cattle. Epidemiol Infect 144:1313–1329.  https://doi.org/10.1017/S0950268815002423 CrossRefGoogle Scholar
  43. 43.
    Kadlec K, Brenner Michael G, Sweeney MT, Brzuszkiewicz E, Liesegang H, Daniel R, Watts JL, Schwarz S (2011) Molecular basis of macrolide, triamilide, and lincosamide resistance in Pasteurella multocida from bovine respiratory disease. Antimicrob Agents Chemother 55:2475–2477.  https://doi.org/10.1128/AAC.00092-11 CrossRefPubMedCentralGoogle Scholar
  44. 44.
    Michael GB, Kadlec K, Sweeney MT, Brzuszkiewicz E, Liesegang H, Daniel R, Murray RW, Watts JL, Schwarz S (2012) ICEPmu1, an integrative conjugative element (ICE) of Pasteurella multocida: analysis of the regions that comprise 12 antimicrobial resistance genes. J Antimicrob Chemother 67:84–90.  https://doi.org/10.1093/jac/dkr406 CrossRefGoogle Scholar
  45. 45.
    San Millan A, Giufre M, Escudero JA, Hidalgo L, Gutierrez B, Cerquetti M, Gonzalez-Zorn B (2011) Contribution of ROB-1 and PBP3 mutations to the resistance phenotype of a beta-lactamase-positive amoxicillin/clavulanic acid-resistant Haemophilus influenzae carrying plasmid pB1000 in Italy. J Antimicrob Chemother 66:96–99.  https://doi.org/10.1093/jac/dkq392 CrossRefGoogle Scholar
  46. 46.
    San Millan A, Santos-Lopez A, Ortega-Huedo R, Bernabe-Balas C, Kennedy SP, Gonzalez-Zorn B (2015) Small-plasmid-mediated antibiotic resistance is enhanced by increases in plasmid copy number and bacterial fitness. Antimicrob Agents Chemother 59:3335–3341CrossRefPubMedCentralGoogle Scholar
  47. 47.
    Santos-Lopez A, Bernabe-Balas C, Ares-Arroyo M, Ortega-Huedo R, Hoefer A, San Millan A, Gonzalez-Zorn B (2017) A naturally occurring single nucleotide polymorphism in a multicopy plasmid produces a reversible increase in antibiotic resistance. Antimicrob Agents Chemother 61:e01735–e01716.  https://doi.org/10.1128/AAC.01735-16 PubMedCentralGoogle Scholar
  48. 48.
    San Millan A, Garcia-Cobos S, Escudero JA, Hidalgo L, Gutierrez B, Carrilero L, Campos J, Gonzalez-Zorn B (2010) Haemophilus influenzae clinical isolates with plasmid pB1000 bearing blaROB-1: fitness cost and interspecies dissemination. Antimicrob Agents Chemother 54:1506–1511.  https://doi.org/10.1128/AAC.01489-09 CrossRefPubMedCentralGoogle Scholar
  49. 49.
    Holman DB, Timsit E, Booker CW, Alexander TW (2018) Injectable antimicrobials in commercial feedlot cattle and their effect on the nasopharyngeal microbiota and antimicrobial resistance. Vet Microbiol 214:140–147.  https://doi.org/10.1016/j.vetmic.2017.12.01 CrossRefGoogle Scholar
  50. 50.
    Atherly T, Ziemer CJ (2014) Bacteroides isolated from four mammalian hosts lack host-specific 16S rRNA gene phylogeny and carbon and nitrogen utilization patterns. MicrobiologyOpen 3:225–238.  https://doi.org/10.1002/mbo3.159 CrossRefPubMedCentralGoogle Scholar
  51. 51.
    Weinroth MD, Carlson CR, Martin JN, Metcalf JL, Morley PS, Belk KE (2017) Rapid communication: 16S ribosomal ribonucleic acid characterization of liver abscesses in feedlot cattle from three states in the United States. J Anim Sci 95:4520–4525.  https://doi.org/10.2527/jas2017.1743 CrossRefGoogle Scholar
  52. 52.
    Van Metre DC (2017) Pathogenesis and treatment of bovine foot rot. Vet Clin North Am Food Anim Pract 33:183–194.  https://doi.org/10.1016/j.cvfa.2017.02.003 CrossRefGoogle Scholar
  53. 53.
    Karlowsky JA, Walkty AJ, Adam HJ, Baxter MR, Hoban DJ, Zhanel GG (2012) Prevalence of antimicrobial resistance among clinical isolates of Bacteroides fragilis group in Canada in 2010-2011: CANWARD surveillance study. Antimicrob Agents Chemother 56:1247–1252.  https://doi.org/10.1128/AAC.05823-1 CrossRefPubMedCentralGoogle Scholar

Copyright information

© Crown 2019

Authors and Affiliations

  1. 1.Lethbridge Research and Development CentreAgriculture and Agri-Food CanadaLethbridgeCanada
  2. 2.Lacombe Research and Development CentreAgriculture and Agri-Food CanadaLacombeCanada
  3. 3.Alberta Agriculture and ForestryAirdrieCanada
  4. 4.Lethbridge Research CentreAlberta Agriculture and ForestryLethbridgeCanada

Personalised recommendations