Advertisement

Microbial Ecology

, Volume 78, Issue 3, pp 665–676 | Cite as

Microbial Ecology of the Western Gull (Larus occidentalis)

  • Susan CockerhamEmail author
  • Becky Lee
  • Rachael A. Orben
  • Robert M. Suryan
  • Leigh G. Torres
  • Pete Warzybok
  • Russell Bradley
  • Jaime Jahncke
  • Hillary S. Young
  • Cleber Ouverney
  • Scott A. Shaffer
ENVIRONMENTAL MICROBIOLOGY

Abstract

Avian species host diverse communities of microorganisms which have important roles in the life of birds, including increased metabolism, protection from disease, and immune system development. Along with high human populations and a diversity of human uses of coastal zones, anthropogenic food sources are becoming increasingly available to some species, including gulls. Anthropogenic associations increase the likelihood of encountering foreign or pathogenic bacteria. Diseases in birds caused by bacteria are a substantial source of avian mortality; therefore, it is essential to characterize the microbiome of seabirds. Here, we determined both core and environmentally derived microbial communities of breeding western gulls (Larus occidentalis) from six colonies in California and Oregon. Using DNA extracted from bacterial swabs of the bill, cloaca, and feet of gulls, 16S rRNA gene sequencing was performed targeting the V4 region. We identified a total of 8542 operational taxonomic units (OTUs) from 75 gulls. Sixty-eight OTUs were identified in gulls from all six colonies with the greatest representation from phyla’s of Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria. Overall, microbial richness based on Chao’s Abundance-based Coverage Estimator (ACE) index was similar for all colonies (mean = 2347 OTUs) with the smallest coastal colonies having the highest richness (mean = 2626 OTUs) and the largest colonies, located farther off-shore, having the lowest (mean = 2068 OTUs). This survey represents the most in-depth assessment to date of microbes associated with western gulls, and the first study to identify both species-specific and environmentally derived bacteria across multiple populations.

Keywords

Avian bacteria Ecology Western gull Larus occidentalis 16S rRNA Firmicutes 

Notes

Acknowledgements

The authors wish to thank P. Morris, G. Taylor, C. Perez, J. Jelincic, C.A. Clatterbuck, S.A. Loredo, A.J. Gladics, J. Dolliver J. Porquez, and E. Pickett for assistance in the field. We thank the UC Natural Reserve System and Oikonos for logistical support at Año Nuevo Island. Travel to the Farallon Islands was made possible by the generosity of the Farallon Patrol. Financial support by grants from SJSU-Powers Scholarship, Myers Trust Foundation, the John and Betty Davidson Research fellowship, and the Bureau of Ocean Energy Management. Permission to conduct the research was granted by Año Nuevo State Park, California State Parks, California Department of Fish and Wildlife, US Fish and Wildlife Service Farallon Islands National Wildlife Refuge (SUP# 81641), the Golden Gate National Park Service (GOGA-2016-SCI-0001), Oregon Coast National Wildlife Refuge Complex, the Oregon Department of Fish and Wildlife, and Oregon State University (OSU). All animal research was conducted in accordance with approvals from San Jose State University Institutional Animal Care and Use Committee (SJSU 979), Point Blue Conservation Science, California Parks, the National Park Service, and the UC Natural Reserve System. Bird Banding permits, Migratory Bird Treaty Act permits, and Special Use Permits for all research were granted by the US Fish and Wildlife Service, US Geological Survey. The authors are grateful to the anonymous referees for their insightful comments on this manuscript during the review process. This work represents the Master of Science thesis of S. Cockerham, San Jose State University.

Supplementary material

248_2019_1352_MOESM1_ESM.docx (162 kb)
Fig. S1 Rarefaction curves of samples from all gull colonies (DOCX 161 kb)
248_2019_1352_MOESM2_ESM.docx (303 kb)
Fig. S2 The percent abundance of the top four phyla found in a) the overall colony composition, b) the core bacteria that was found in all colonies, and on all birds, and c) in the environmentally derived bacteria that is unique bacteria found on the feet. Only phyla with > 1% relative abundance are shown (DOCX 302 kb)
248_2019_1352_MOESM3_ESM.docx (80 kb)
Table S1 Taxonomic Categorization of all 16S DNA gull samples (8516 OTUs). (DOCX 79 kb)
248_2019_1352_MOESM4_ESM.docx (96 kb)
Table S2 Taxonomic Categorization of Core 16S DNA gull samples (68 OTUs). (DOCX 96 kb)
248_2019_1352_MOESM5_ESM.docx (83 kb)
Table S3 Taxonomic Categorization of Environmental 16S DNA gull samples (2117 OTUs). (DOCX 82 kb)

References

  1. 1.
    Benskin CMH, Rhodes G, Pickup RW, Wilson K, Hartley IR (2010) Diversity and temporal stability of bacterial communities in a model passerine bird, the zebra finch. Mol. Ecol. 19(24):5531–5544.  https://doi.org/10.1111/j.1365-294X.2010.04892.x CrossRefGoogle Scholar
  2. 2.
    Wilkinson N, Hughes RJ, Aspden WJ, Chapman J, Moore RJ, Stanley D (2016) The gastrointestinal tract microbiota of the Japanese quail, Coturnix japonica. Appl. Microbiol. Biotechnol. 100(9):4201–4209.  https://doi.org/10.1007/s00253-015-7280-z CrossRefGoogle Scholar
  3. 3.
    Garcia-Mazcorro JF, Castillo-Carranza SA, Guard B, Gomez-Vazquez JP, Dowd SE, Brigthsmith DJ (2017) Comprehensive molecular characterization of bacterial communities in feces of pet birds using 16S marker sequencing. Microb. Ecol. 73(1):224–235.  https://doi.org/10.1007/s00248-016-0840-7 CrossRefGoogle Scholar
  4. 4.
    Friend M, Franson J (1999) Field manual of wildlife diseases: general field procedure and diseases of birds. USGS, MadisonGoogle Scholar
  5. 5.
    Jin L, Ho Y, Abdullah N, Jalaludin S (1998) Growth performance, intestinal microbial populations, and serum cholesterol of broilers fed diets containing lactobacillus cultures. Poult. Sci. 77(9):1259–1265.  https://doi.org/10.1093/ps/77.9.1259 CrossRefGoogle Scholar
  6. 6.
    Semova I, Carten JD, Stombaugh J, Mackey LC, Knight R, Farber SA, Rawls JF (2012) Microbiota regulate intestinal absorption and metabolism of fatty acids in the zebrafish. Cell Host Microbe 12(3):277–288.  https://doi.org/10.1016/j.chom.2012.08.003 CrossRefGoogle Scholar
  7. 7.
    Brisbin J, Gong J, Sharif S (2008) Interactions between commensal bacteria and the gut-associated immune system of the chicken. Anim. Health Res. Rev. 9(1):101–110.  https://doi.org/10.1017/S146625230800145X CrossRefGoogle Scholar
  8. 8.
    Shaffer SA, Tremblay Y, Weimerskirch H, Scott D, Thompson DR, Sagar PM, Moller H, Taylor GA, Foley DG, Block BA, Costa DP (2006) Migratory shearwaters integrate oceanic resources across the Pacific Ocean in an endless summer. Proc Natl Acad Sci U S A 103(34):12799–12802CrossRefGoogle Scholar
  9. 9.
    Stutchbury BJM, Tarof SA, Done T, Gow E, Kramer PM, Tautin J, Fox JW, Afanasyev V (2009) Tracking long-distance songbird migration using geolocators. Science 323:896CrossRefGoogle Scholar
  10. 10.
    Egevang C, Stenhouse IJ, Phillips RA, Petersen A, Fox JW, Silk JRD (2010) Tracking of Arctic terns Sterna paradisaea reveals longest animal migration. Proc. Natl. Acad. Sci. 107(5):2078–2081CrossRefGoogle Scholar
  11. 11.
    van der Wielen P, Keuzenkamp D, Lipman L, van Knapen F, Biesterveld S (2002) Spatial and temporal variation of the intestinal bacterial community in commercially raised broiler chickens during growth. Microb. Ecol. 44(3):286–293.  https://doi.org/10.1007/s00248-002-2015-y CrossRefGoogle Scholar
  12. 12.
    Waite DW, Taylor MW (2014) Characterizing the avian gut microbiota: membership, driving influences, and potential function. Front. Microbiol. 5:223.  https://doi.org/10.3389/fmicb.2014.00223 CrossRefGoogle Scholar
  13. 13.
    Lucas F, Heeb P (2005) Environmental factors shape cloacal bacterial assemblages in great tit Parus major and blue tit P. caeruleus nestlings. J. Avian Biol. 36(6):510–516.  https://doi.org/10.1111/j.0908-8857.2005.03479.x CrossRefGoogle Scholar
  14. 14.
    Hird SM, Carstens BC, Cardiff S, Dittmann DL, Brumfield RT (2014) Sampling locality is more detectable than taxonomy or ecology in the gut microbiota of the brood-parasitic brown-headed cowbird (Molothrus ater). PeerJ 2:e321.  https://doi.org/10.7717/peerj.321 CrossRefGoogle Scholar
  15. 15.
    Hochachka W, Dhondt A (2000) Density-dependent decline of host abundance resulting from a new infectious disease. Proc. Natl. Acad. Sci. U. S. A. 97(10):5303–5306.  https://doi.org/10.1073/pnas.080551197 CrossRefGoogle Scholar
  16. 16.
    Goldstein T, Mena I, Anthony SJ, Medina R, Robinson PW, Greig DJ, Costa DP, Lipkin WI, Garcia-Sastre A, Boyce WM (2013) Pandemic H1N1 influenza isolated from free-ranging northern elephant seals in 2010 off the Central California coast. PLoS One 8(5):e62259.  https://doi.org/10.1371/journal.pone.0062259 CrossRefGoogle Scholar
  17. 17.
    Dolejska M, Masarikova M, Dobiasova H, Jamborova I, Karpiskova R, Havlicek M, Carlile N, Priddel D, Cizek A, Literak I (2016) High prevalence of salmonella and IMP-4-producing Enterobacteriaceae in the silver gull on five islands, Australia. J. Antimicrob. Chemother. 71(1):63–70.  https://doi.org/10.1093/jac/dkv306 CrossRefGoogle Scholar
  18. 18.
    Lan G, Abdullah N, Jalaludin S, Ho Y (2002) Efficacy of supplementation of a phytase-producing bacterial culture on the performance and nutrient use of broiler chickens fed corn-soybean meal diets. Poult. Sci. 81(10):1522–1532.  https://doi.org/10.1093/ps/81.10.1522 CrossRefGoogle Scholar
  19. 19.
    Taff CC, Weis AM, Wheeler S, Hinton MG, Weimer BC, Barker CM, Jones M, Logsdon R, Smith WA, Boyce WM, Townsend AK (2016) Influence of host ecology and behavior on campylobacter jejuni prevalence and environmental contamination risk in a synanthropic wild bird species. Appl. Environ. Microbiol. 82(15):4811–4820.  https://doi.org/10.1128/AEM.01456-16 CrossRefGoogle Scholar
  20. 20.
    Lu J, Idris U, Harmon B, Hofacre C, Maurer J, Lee M (2003) Diversity and succession of the intestinal bacterial community of the maturing broiler chicken. Appl. Environ. Microbiol. 69(11):6816–6824.  https://doi.org/10.1128/AEM.69.11.6816-6824.2003 CrossRefGoogle Scholar
  21. 21.
    Amit-Romach E, Sklan D, Uni Z (2004) Microflora ecology of the chicken intestine using 16S ribosomal DNA primers. Poult. Sci. 83(7):1093–1098CrossRefGoogle Scholar
  22. 22.
    Gong J, Si W, Forster RJ, Huang R, Yu H, Yin Y, Yang C, Han Y (2007) 16S rRNA gene-based analysis of mucosa-associated bacterial community and phylogeny in the chicken gastrointestinal tracts: from crops to ceca. FEMS Microbiol. Ecol. 59(1):147–157.  https://doi.org/10.1111/j.1574-6941.2006.00193.x CrossRefGoogle Scholar
  23. 23.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the illumina HiSeq and MiSeq platforms. ISME J. 6(8):1621–1624.  https://doi.org/10.1038/ismej.2012.8 CrossRefGoogle Scholar
  24. 24.
    Buffie CG, Pamer EG (2013) Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13(11):790–801.  https://doi.org/10.1038/nri3535 CrossRefGoogle Scholar
  25. 25.
    Tefit MA, Leulier F (2017) Lactobacillus plantarum favors the early emergence of fit and fertile adult drosophila upon chronic undernutrition. J. Exp. Biol. 220(5):900–907.  https://doi.org/10.1242/jeb.151522 Google Scholar
  26. 26.
    Kohl KD, Brun A, Bordenstein SR, Caviedes-Vidal E, Karasov WH (2018) Gut microbes limit growth in house sparrow nestlings (Passer domesticus) but not through limitations in digestive capacity. Integr Zool 13(2):139–151.  https://doi.org/10.1111/1749-4877.12289 CrossRefGoogle Scholar
  27. 27.
    Vancanneyt M, Vandamme P, Segers P, Torck U, Coopman R, Kersters K, Hinz KH (1999) Riemerella columbina sp. nov., a bacterium associated with respiratory disease in pigeons. Int. J. Syst. Bacteriol. 49:289–295.  https://doi.org/10.1099/00207713-49-1-289 CrossRefGoogle Scholar
  28. 28.
    Craven S, Stern N, Line E, Bailey J, Cox N, Fedorka-Cray P (2000) Determination of the incidence of salmonella spp., campylobacter jejuni, and Clostridium perfringens in wild birds near broiler chicken houses by sampling intestinal droppings. Avian Dis. 44(3):715–720.  https://doi.org/10.2307/1593118 CrossRefGoogle Scholar
  29. 29.
    Jourdain E, Gauthier-Clerc M, Bicout DJ, Sabatier P (2007) Bird migration routes and risk for pathogen dispersion into western mediterranean wetlands. Emerg. Infect. Dis. 13(3):365–372.  https://doi.org/10.3201/eid1303.060301 CrossRefGoogle Scholar
  30. 30.
    Fuller T, Bensch S, Mueller I, Novembre J, Perez-Tris J, Ricklefs RE et al (2012) The ecology of emerging infectious diseases in migratory birds: an assessment of the role of climate change and priorities for future research. Ecohealth 9(1):80–88.  https://doi.org/10.1007/s10393-012-0750-1 CrossRefGoogle Scholar
  31. 31.
    Santos SS, Pardal S, Proenca DN, Lopes RJ, Ramos JA, Mendes L et al (2012) Diversity of cloacal microbial community in migratory shorebirds that use the Tagus estuary as stopover habitat and their potential to harbor and disperse pathogenic microorganisms. FEMS Microbiol. Ecol. 82(1):63–74.  https://doi.org/10.1111/j.1574-6941.2012.01407.x CrossRefGoogle Scholar
  32. 32.
    Lewis WB, Moore FR, Wang S (2016) Characterization of the gut microbiota of migratory passerines during stopover along the northern coast of the Gulf of Mexico. J. Avian Biol. 47(5):659–668.  https://doi.org/10.1111/jav.00954 CrossRefGoogle Scholar
  33. 33.
    Webber AF, Heath JA, Fischer RA (2013) Human disturbance and stage-specific habitat requirements influence snowy plover site occupancy during the breeding season. Ecol Evol 3(4):853–863.  https://doi.org/10.1002/ece3.511 CrossRefGoogle Scholar
  34. 34.
    Correll MD, Wiest WA, Hodgman TP, Shriver WG, Elphick CS, McGill BJ, O'Brien KM, Olsen BJ (2017) Predictors of specialist avifaunal decline in coastal marshes. Conserv. Biol. 31(1):172–182.  https://doi.org/10.1111/cobi.12797 CrossRefGoogle Scholar
  35. 35.
    Yoda K, Tomita N, Mizutani Y, Narita A, Niizuma Y (2012) Spatio-temporal responses of black-tailed gulls to natural and anthropogenic food resources. Mar. Ecol. Prog. Ser. 466:249–259.  https://doi.org/10.3354/meps09939 CrossRefGoogle Scholar
  36. 36.
    Corman A, Mendel B, Voigt CC, Garthe S (2016) Varying foraging patterns in response to competition? A multicolony approach in a generalist seabird. Ecol Evol 6(4):974–986.  https://doi.org/10.1002/ece3.1884 CrossRefGoogle Scholar
  37. 37.
    Navarro J, Gremillet D, Ramirez FJ, Afan I, Bouten W, Forero MG (2017) Shifting individual habitat specialization of a successful predator living in anthropogenic landscapes. Mar. Ecol. Prog. Ser. 578:243–251.  https://doi.org/10.3354/meps12124 CrossRefGoogle Scholar
  38. 38.
    Shaffer SA, Cockerham S, Warzybok P, Bradley RW, Jahncke J, Clatterbuck CA, Lucia M, Jelincic JA, Cassell AL, Kelsey EC, Adams J (2017) Population-level plasticity in foraging behavior of western gulls (Larus occidentalis). Mov Ecol 5:27.  https://doi.org/10.1186/s40462-017-0118-9 CrossRefGoogle Scholar
  39. 39.
    Alonso H, Almeida A, Granadeiro JP, Catry P (2015) Temporal and age-related dietary variations in a large population of yellow-legged gulls Larus michahellis: implications for management and conservation. Eur. J. Wildl. Res. 61(6):819–829.  https://doi.org/10.1007/s10344-015-0958-9 CrossRefGoogle Scholar
  40. 40.
    Isaksson N, Evans TJ, Shamoun-Baranes J, Akesson S (2016) Land or sea? foraging area choice during breeding by an omnivorous gull. Mov Ecol 4:UNSP 11.  https://doi.org/10.1186/s40462-016-0078-5 CrossRefGoogle Scholar
  41. 41.
    Alderisio K, DeLuca N (1999) Seasonal enumeration of fecal coliform bacteria from the feces of ring-billed gulls (Larus delawarensis) and canada geese (Branta canadiensis). Appl. Environ. Microbiol. 65(12):5628–5630Google Scholar
  42. 42.
    Lu J, Santo Domingo JW, Lamendella R, Edge T, Hill S (2008) Phylogenetic diversity and molecular detection of bacteria in gull feces. Appl. Environ. Microbiol. 74(13):3969–3976.  https://doi.org/10.1128/AEM.00019-08 CrossRefGoogle Scholar
  43. 43.
    Steele C, Brown R, Botzler R (2005) Prevalences of zoonotic bacteria among seabirds in rehabilitation centers along the pacific coast of California and Washington, USA. J. Wildl. Dis. 41(4):735–744.  https://doi.org/10.7589/0090-3558-41.4.735 CrossRefGoogle Scholar
  44. 44.
    Perotti RJ, Annett CA (1995) Western Gull (Larus occidentalis), version 2.0. In: Poole AF, Gill FB (eds) The Birds of North America. Cornell Lab of Ornithology, Ithaca.  https://doi.org/10.2173/bna.174 Google Scholar
  45. 45.
    Annett C, Pierotti R (1989) Chick hatching as a trigger for dietary switching in the western gull. Colon Waterbirds 12(1):4–11.  https://doi.org/10.2307/1521306 CrossRefGoogle Scholar
  46. 46.
    Annett CA, Pierotti R (1999) Long-term reproductive output in western gulls: consequences of alternate tactics in diet choice. Ecology (Washington D C) 80(1):288–297Google Scholar
  47. 47.
    Cassell AL (2016) Intercolony comparison of diets of western gulls in central California. MSc Thesis. San Jose State UniversityGoogle Scholar
  48. 48.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75(23):7537–7541.  https://doi.org/10.1128/AEM.01541-09 CrossRefGoogle Scholar
  49. 49.
    Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glöckner FO (2013) The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41(D1):D590–D596.  https://doi.org/10.1093/nar/gks1219 CrossRefGoogle Scholar
  50. 50.
    Chao A, Chazdon R, Colwell R, Shen T (2005) A new statistical approach for assessing similarity of species composition with incidence and abundance data. Ecol. Lett. 8(2):148–159.  https://doi.org/10.1111/j.1461-0248.2004.00707.x CrossRefGoogle Scholar
  51. 51.
    Shannon CE (1948) A mathematical theory of communications. Bell Syst Tech J 27:379–423CrossRefGoogle Scholar
  52. 52.
    Yue J, Clayton M (2005) A similarity measure based on species proportions. Communications in Statistics-Theory and Methods 34(11):2123–2131.  https://doi.org/10.1080/STA-200066418 CrossRefGoogle Scholar
  53. 53.
    Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among dna haplotypes: application to human mitochondrial dna restriction data. Genetics 131:479–491Google Scholar
  54. 54.
    Fitch W (1971) Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Zool. 20(4):406–416.  https://doi.org/10.2307/2412116 CrossRefGoogle Scholar
  55. 55.
    Chao A, Jost L (2012) Coverage-based rarefaction and extrapolation: standardizing samples by completeness rather than size. ESA 93(12):2533–2547.  https://doi.org/10.1890/11-1952.1
  56. 56.
    Dewar ML, Arnould JPY, Krause L, Dann P, Smith SC (2014) Interspecific variations in the faecal microbiota of procellariiform seabirds. FEMS Microbiol. Ecol. 89(1):47–55.  https://doi.org/10.1111/1574-6941.12332 CrossRefGoogle Scholar
  57. 57.
    Kohl KD (2012) Diversity and function of the avian gut microbiota. J Comp Physiol B 182(5):591–602.  https://doi.org/10.1007/s00360-012-0645-z CrossRefGoogle Scholar
  58. 58.
    van Dongen WFD, White J, Brandl HB, Moodley Y, Merkling T, Leclaire S, Blanchard P, Danchin É, Hatch SA, Wagner RH (2013) Age-related differences in the cloacal microbiota of a wild bird species. BMC Ecol 13:UNSP 11.  https://doi.org/10.1186/1472-6785-13-11 CrossRefGoogle Scholar
  59. 59.
    Ley RE, Lozupone CA, Hamady M, Knight R, Gordon JI (2008) Worlds within worlds: evolution of the vertebrate gut microbiota. Nat. Rev. Microbiol. 6(10):776–788.  https://doi.org/10.1038/nrmicro1978. 10 May 2018
  60. 60.
    Godoy-Vitorino F, Leal SJ, Díaz WA, Rosales J, Goldfarb KC, García-Amado MA et al (2012) Differences in crop bacterial community structure between hoatzins from different geographical locations. Res Microbiol.  https://doi.org/10.1016/j.resmic.2012.01.001
  61. 61.
    Su H, McKelvey J, Rollins D, Zhang M, Brightsmith DJ, Derr J, Zhang S (2014) Cultivable bacterial microbiota of northern bobwhite (Colinus virginianus): a new reservoir of antimicrobial resistance? PLoS One 9(6):e99826.  https://doi.org/10.1371/journal.pone.0099826 CrossRefGoogle Scholar
  62. 62.
    D'Andreano S, Bonastre AS, Francino O, Marti AC, Lecchi C, Grilli G et al (2017) GENETICS AND GENOMICS gastrointestinal microbial population of turkey (Meleagris gallopavo) affected by hemorrhagic enteritis virus. Poult. Sci. 96(10):3550–3558.  https://doi.org/10.3382/ps/pex139 CrossRefGoogle Scholar
  63. 63.
    Teyssier A, Rouffaer LO, Salleh Hudin N, Strubbe D, Lens L, White J (2018) Inside the guts of the city: urban-induced alterations of the gut microbiota in a wild passerine. Sci. Total Environ. 612:1276–1286CrossRefGoogle Scholar
  64. 64.
    Littman DR, Pamer EG (2011) Role of the commensal microbiota in normal and pathogenic host immune responses. Cell Host Microbe 10(4):311–323.  https://doi.org/10.1016/j.chom.2011.10.004 CrossRefGoogle Scholar
  65. 65.
    Abt MC, Artis D (2013) The dynamic influence of commensal bacteria on the immune response to pathogens. Curr. Opin. Microbiol. 16(1):4–9.  https://doi.org/10.1016/j.mib.2012.12.002 CrossRefGoogle Scholar
  66. 66.
    MacArthur RH, Wilson EO (1963) An equilibrium theory of insular zoogeography. Evolution 17:373–387.  https://doi.org/10.1111/j.1558-5646.1963.tb03295.x CrossRefGoogle Scholar
  67. 67.
    Baas Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. W.P. Van Stoc- kum & Zoon, The Hague (in Dutch)Google Scholar
  68. 68.
    Reche I, Pulido-Villena E, Morales-Baquero R, Casamayor EO (2007) Does ecosystem size determine aquatic bacteria richness? Ecology 88:253–255. https://doi.org/10.1890/0012-9658(2007)88[253:DESDAB]2.0.CO;2Google Scholar
  69. 69.
    Camphuysen KCJ, Shamoun-Baranes J, van Loon EE, Bouten W (2015) Sexually distinct foraging strategies in an omnivorous seabird. Mar. Biol. 162(7):1417–1428.  https://doi.org/10.1007/s00227-015-2678-9 CrossRefGoogle Scholar
  70. 70.
    Garthe S, Schwemmer P, Paiva VH, Corman A, Fock HO, Voigt CC et al (2016) Terrestrial and marine foraging strategies of an opportunistic seabird species breeding in the Wadden sea. PLoS One 11(8):e0159630.  https://doi.org/10.1371/journal.pone.0159630 CrossRefGoogle Scholar
  71. 71.
    Gremillet D, Dell’Omo G, Ryan PG, Ropert-Coudert Y, Weeks S (2004) Offshore diplomacy, or how seabirds mitigate intra-specific competition: a case study based on GPS tracking of cape gannets from neighbouring breeding sites. Mar. Ecol. Prog. Ser. 268:265–279CrossRefGoogle Scholar
  72. 72.
    Frechette DM, A-MK O, Hayes SA, Moore JW, Shaffer SA, Pavelka M, Winchell C, Harvey JT (2015) Assessing the relationship between gulls and salmon in central California using radio telemetry. North Am J Fish Manag. 35:775–788CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Susan Cockerham
    • 1
    Email author
  • Becky Lee
    • 1
  • Rachael A. Orben
    • 2
  • Robert M. Suryan
    • 2
    • 3
  • Leigh G. Torres
    • 4
  • Pete Warzybok
    • 5
  • Russell Bradley
    • 5
  • Jaime Jahncke
    • 5
  • Hillary S. Young
    • 6
  • Cleber Ouverney
    • 1
  • Scott A. Shaffer
    • 1
    • 7
  1. 1.Department of Biological SciencesSan José State UniversitySan JoseUSA
  2. 2.Department of Fisheries and Wildlife, Hatfield Marine Science CenterOregon State UniversityNewportUSA
  3. 3.Alaska Fisheries Science Center, Auke Bay LaboratoriesNOAA FisheriesJuneauUSA
  4. 4.Department of Fisheries and Wildlife, Marine Mammal InstituteOregon State University, Hatfield Marine Science CenterNewportUSA
  5. 5.Point Blue Conservation SciencePetalumaUSA
  6. 6.Ecology, Evolution, and Marine BiologyUniversity of CaliforniaSanta BarbaraUSA
  7. 7.Institute of Marine SciencesUniversity of CaliforniaSanta CruzUSA

Personalised recommendations