Advertisement

Microbial Ecology

, Volume 78, Issue 3, pp 539–554 | Cite as

Microbial Organic Matter Utilization in High-Arctic Streams: Key Enzymatic Controls

  • Ada PastorEmail author
  • Anna Freixa
  • Louis J. Skovsholt
  • Naicheng Wu
  • Anna M. Romaní
  • Tenna Riis
Microbiology of Aquatic System

Abstract

In the Arctic, climate changes contribute to enhanced mobilization of organic matter in streams. Microbial extracellular enzymes are important mediators of stream organic matter processing, but limited information is available on enzyme processes in this remote area. Here, we studied the variability of microbial extracellular enzyme activity in high-Arctic fluvial biofilms. We evaluated 12 stream reaches in Northeast Greenland draining areas exhibiting different geomorphological features with contrasting contents of soil organic matter to cover a wide range of environmental conditions. We determined stream nitrogen, phosphorus, and dissolved organic carbon concentrations, quantified algal biomass and bacterial density, and characterized the extracellular enzyme activities involved in catalyzing the cleavage of a range of organic matter compounds (e.g., β-glucosidase, phosphatase, β-xylosidase, cellobiohydrolase, and phenol oxidase). We found significant differences in microbial organic matter utilization among the study streams draining contrasting geomorphological features, indicating a strong coupling between terrestrial and stream ecosystems. Phosphatase and phenol oxidase activities were higher in solifluction areas than in alluvial areas. Besides dissolved organic carbon, nitrogen availability was the main driver controlling enzyme activities in the high-Arctic, which suggests enhanced organic matter mineralization at increased nutrient availability. Overall, our study provides novel information on the controls of organic matter usage by high-Arctic stream biofilms, which is of high relevance due to the predicted increase of nutrient availability in high-Arctic streams in global climate change scenarios.

Keywords

Nutrients Biofilm Extracellular enzymes Geomorphology Greenland 

Notes

Acknowledgements

The authors thank Biobasis, Geobasis, and Zackenberg logistics for assistance at the Zackenberg Research Station. We are grateful to the GeoBasis Programme of the Zackenberg research station and Stefanie Cable for providing DEM and geomorphological data, respectively. Special thanks to Lone J. Ottosen, Malin Camilla Håckansson, and Birgitte Kretzschmar Tagesen for their support in laboratory analysis.

Funding Information

This work was financially supported by the Carlsberg Foundation (grant number CF16-0325). AP has received additional support from the Ramón Areces Foundation postgraduate studies program.

Supplementary material

248_2019_1330_MOESM1_ESM.docx (377 kb)
ESM 1 (DOCX 377 kb)

References

  1. 1.
    Tarnocai C, Canadell JG, Schuur EAG et al (2009) Soil organic carbon pools in the northern circumpolar permafrost region. Glob Biogeochem Cycles 23:1–11.  https://doi.org/10.1029/2008GB003327 CrossRefGoogle Scholar
  2. 2.
    Panneer Selvam B, Lapierre J-F, Guillemette F et al (2017) Degradation potentials of dissolved organic carbon (DOC) from thawed permafrost peat. Sci Rep 7:45811.  https://doi.org/10.1038/srep45811 CrossRefGoogle Scholar
  3. 3.
    Drake TW, Wickland KP, Spencer RGM et al (2015) Ancient low-molecular-weight organic acids in permafrost fuel rapid carbon dioxide production upon thaw. PNAS 112:13946–11395.  https://doi.org/10.1073/pnas.1511705112 CrossRefGoogle Scholar
  4. 4.
    Elberling B, Michelsen A, Schädel C et al (2013) Long-term CO2 production following permafrost thaw. Nat Clim Chang 3:890–894.  https://doi.org/10.1038/nclimate1955 CrossRefGoogle Scholar
  5. 5.
    Abbott BW, Larouche JR, Jones JB, Bowden WB, Balser AW (2014) Elevated dissolved organic carbon biodegradability from thawing and collapsing permafrost. J Geophys Res Biogeosciences 119(10):2049–2063Google Scholar
  6. 6.
    Crowther T, Todd-Brown K, Rowe C et al (2016) Quantifying global soil C losses in response to warming. Nature 540:104–108.  https://doi.org/10.1038/nature20150 CrossRefGoogle Scholar
  7. 7.
    Frey KE, McClelland JW (2009) Impacts of permafrost degradation on arctic river biogeochemistry. Hydrol Process 23:169–182.  https://doi.org/10.1002/hyp CrossRefGoogle Scholar
  8. 8.
    Bowden WB, Gooseff MN, Balser A et al (2008) Sediment and nutrient delivery from thermokarst features in the foothills of the North Slope, Alaska: potential impacts on headwater stream ecosystems. J Geophys Res Biogeosci 113:1–12.  https://doi.org/10.1029/2007JG000470 CrossRefGoogle Scholar
  9. 9.
    Olefeldt D, Goswami S, Grosse G et al (2016) Circumpolar distribution and carbon storage of thermokarst landscapes. Nat Commun 7:1–11.  https://doi.org/10.1038/ncomms13043 CrossRefGoogle Scholar
  10. 10.
    Vonk JE, Tank SE, Bowden WB et al (2015) Reviews and syntheses: effects of permafrost thaw on Arctic aquatic ecosystems. Biogeosciences 12:7129–7167.  https://doi.org/10.5194/bg-12-7129-2015 CrossRefGoogle Scholar
  11. 11.
    Anderson NJ, Saros JE, Bullard JE et al (2017) The Arctic in the twenty-first century: changing biogeochemical linkages across a paraglacial landscape of Greenland. Bioscience 67:biw158.  https://doi.org/10.1093/biosci/biw158 CrossRefGoogle Scholar
  12. 12.
    Cole JJ, Prairie YT, Caraco NF et al (2007) Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems 10:172–185CrossRefGoogle Scholar
  13. 13.
    Battin TJ, Kaplan LA, Findlay S et al (2009) Biophysical controls on organic carbon fluxes in fluvial networks. Nat Geosci 2:595–595.  https://doi.org/10.1038/ngeo602 CrossRefGoogle Scholar
  14. 14.
    Mann PJ, Eglinton TI, Mcintyre CP et al (2015) Utilization of ancient permafrost carbon in headwaters of Arctic fluvial networks OPEN. Nat Commun 6:1–7.  https://doi.org/10.1038/ncomms8856 CrossRefGoogle Scholar
  15. 15.
    Spencer RGM, Man PJ, Dittmar T et al (2015) Detecting the signature of permafrost thaw in Arctic rivers. Geophys Res Lett 42:2830–2835.  https://doi.org/10.1002/2015GL063498.Received CrossRefGoogle Scholar
  16. 16.
    Arnosti C (2003) Microbial extracellular enzymes and their role in dissolved organic matter cycling. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems interactivity of dissolved organic matter. Academic Press, ElsevierGoogle Scholar
  17. 17.
    Battin TJ, Besemer K, Bengtsson MM et al (2016) The ecology and biogeochemistry of stream biofilms. Nat Rev Microbiol 14:251–263.  https://doi.org/10.1038/nrmicro.2016.15 CrossRefGoogle Scholar
  18. 18.
    Sinsabaugh RL, Osgood MP, Findlay S (1994) Enzymatic models for estimating decomposition rates of particulate detritus. J North Am Benthol Soc 13:160–169CrossRefGoogle Scholar
  19. 19.
    Steen AD, Arnosti C (2013) Extracellular peptidase and carbohydrate hydrolase activities in an Arctic fjord (Smeerenburgfjord, Svalbard). Aquat Microb Ecol 69:93–99.  https://doi.org/10.3354/ame01625 CrossRefGoogle Scholar
  20. 20.
    Steen AD, Arnosti C (2011) Long lifetimes of B-glucosidase, leucine aminopeptidase, and phosphatase in Arctic seawater. Mar Chem 123:127–132.  https://doi.org/10.1016/j.marchem.2010.10.006 CrossRefGoogle Scholar
  21. 21.
    Arnosti C, Steen AD, Ziervogel K et al (2011) Latitudinal gradients in degradation of marine dissolved organic carbon. PLoS One 6:8–13.  https://doi.org/10.1371/journal.pone.0028900 CrossRefGoogle Scholar
  22. 22.
    Mann PJ, Sobczak WV, Larue MM et al (2014) Evidence for key enzymatic controls on metabolism of Arctic river organic matter. Glob Chang Biol 20:1089–1100.  https://doi.org/10.1111/gcb.12416 CrossRefGoogle Scholar
  23. 23.
    Freimann R, Bu H, Findlay SEG, Robinson CT (2013) Response of lotic microbial communities to altered water source and nutritional state in a glaciated alpine floodplain. Limnol Oceanogr 58:951–965.  https://doi.org/10.4319/lo.2013.58.3.0951 CrossRefGoogle Scholar
  24. 24.
    Freimann R, Bürgmann H, Findlay SE, Robinson CT (2013) Bacterial structures and ecosystem functions in glaciated floodplains: contemporary states and potential future shifts. ISME J 7:2361–2373.  https://doi.org/10.1038/ismej.2013.114 CrossRefGoogle Scholar
  25. 25.
    Catalán N, Marcé R, Kothawala DN, Tranvik LJ (2016) Organic carbon decomposition rates controlled by water retention time across inland waters. Nat Geosci 9:501–504.  https://doi.org/10.1038/ngeo2720 CrossRefGoogle Scholar
  26. 26.
    Romaní AM, Artigas J, Ylla I (2012) Extracellular enzymes in aquatic biofilms: microbial interactions versus water quality effects in the use of organic matter. In: Lear G, Lewis GD (eds) Microbial biofilms: current research and applications. Caister Academic Press, pp 153–174Google Scholar
  27. 27.
    Sinsabaugh RL, Follstad Shah JJ (2012) Ecoenzymatic stoichiometry and ecological theory. Annu Rev Ecol Evol Syst 43:313–343.  https://doi.org/10.1146/annurev-ecolsys-071112-124414 CrossRefGoogle Scholar
  28. 28.
    Harms TK, Abbott BW, Jones JB (2014) Thermo-erosion gullies increase nitrogen available for hydrologic export. Biogeochemistry 117:299–311.  https://doi.org/10.1007/s10533-013-9862-0 CrossRefGoogle Scholar
  29. 29.
    Lafrenière M, Louiseize N, Lamoureux S (2017) Active layer slope disturbances affect seasonality and composition of dissolved nitrogen export from High Arctic headwater catchments. Arct Sci 450:429–450CrossRefGoogle Scholar
  30. 30.
    Docherty CL, Riis T;, Hannah D;, et al (2018) Nutrient uptake controls and limitation dynamics in northeast Greenland streams. Polar Res. 37.  https://doi.org/10.1080/17518369.2018.1440107
  31. 31.
    Shelef E, Rowland JC, Wilson CJ et al (2017) Large uncertainty in permafrost carbon stocks due to hillslope soil deposits. Geophys Res Lett 44(12):6134–6144Google Scholar
  32. 32.
    Cable S, Christiansen HH, Westergaard-Nielsen A et al (2017) Geomorphological and cryostratigraphical analyses of the Zackenberg Valley, NE Greenland and significance of Holocene alluvial fans. Geomorphology 303:504–523.  https://doi.org/10.1016/j.geomorph.2017.11.003 CrossRefGoogle Scholar
  33. 33.
    Michaelson GJ, Ping CL, Kimble JM (1996) Carbon storage and distribution in tundra soils of Arctic Alaska, U.S.A. Arct Alp Res 28:414–424.  https://doi.org/10.1107/S0567740869002214 CrossRefGoogle Scholar
  34. 34.
    Hawkings J, Wadham J, Tranter M et al (2016) The Greenland Ice Sheet as a hot spot of phosphorus weathering and export in the Arctic. Glob Biogeochem Cycles 30:191–210.  https://doi.org/10.1002/2015GB005237.Received CrossRefGoogle Scholar
  35. 35.
    Blaen PJ, Hannah DM, Brown LE, Milner AM (2014) Water source dynamics of high Arctic river basins. Hydrol Process 28:3521–3538.  https://doi.org/10.1002/hyp.9891 CrossRefGoogle Scholar
  36. 36.
    Christiansen HH, Sigsgaard C, Humlum O et al (2008) Permafrost and periglacial geomorphology at Zackenberg. Adv Ecol Res 40:151–174.  https://doi.org/10.1016/S0065-2504(07)00007-4 CrossRefGoogle Scholar
  37. 37.
    Hasholt B, Hagedorn B (2000) Hydrology and geochemistry of river-borne material in a high Arctic drainage system, Zackenberg, Northeast Greenland. Arct Antarct Alp Res 32:84–94CrossRefGoogle Scholar
  38. 38.
    Elberling BO, Tamstorf MP, Michelsen A, et al (2008) Soil and plant community—characteristics and dynamics at Zackenberg. In: Advances in ecological research. Elsevier Ltd, pp 223–2448Google Scholar
  39. 39.
    Palmtag J, Cable S, Christiansen HH et al (2018) Landform partitioning and estimates of deep storage of soil organic matter in Zackenberg, Greenland. Cryopshere 12:1735–1744Google Scholar
  40. 40.
    Helms JR, Stubbins A, Ritchie JD et al (2008) Absorption spectral slopes and slope ratios as indicators of molecular weight, source, and photobleaching of chromophoric dissolved organic matter. Limnol Oceanogr 53:955–969.  https://doi.org/10.4319/lo.2008.53.3.0955 CrossRefGoogle Scholar
  41. 41.
    Weishaar JL, Aiken GR, Bergamaschi BA et al (2003) Evaluation of specific ultraviolet absorbance as an indicator of the chemical composition and reactivity of dissolved organic carbon. Environ Sci Technol 37:4702–4708.  https://doi.org/10.1021/es030360x CrossRefGoogle Scholar
  42. 42.
    Green SA, Blough NV (1994) Optical absorption and fluorescence properties of chromophoric dissolved organic matter in natural waters. Limnol Oceanogr 39:1903–1916.  https://doi.org/10.4319/lo.1994.39.8.1903 CrossRefGoogle Scholar
  43. 43.
    Poulin BA, Ryan JN, Aiken GR (2014) Effects of iron on optical properties of dissolved organic matter. Environ Sci Technol 48:10098–10106.  https://doi.org/10.1021/es502670r CrossRefGoogle Scholar
  44. 44.
    Steinman AD, Lamberti GA, Leavitt PR (2006) Biomass and pigments of benthic algae. In: Lamberti FR, Hauer GA (eds) Methods in stream ecology. Academic Press, San Diego, pp 357–380Google Scholar
  45. 45.
    Sinsabaugh RL, Hill BH, Follstad Shah JJ (2009) Ecoenzymatic stoichiometry of microbial organic nutrient acquisition in soil and sediment. Nature 462:795–798.  https://doi.org/10.1038/nature08632 CrossRefGoogle Scholar
  46. 46.
    Ylla I, Peter H, Romaní AM, Tranvik LJ (2013) Different diversity-functioning relationship in lake and stream bacterial communities. FEMS Microbiol Ecol 85:95–103.  https://doi.org/10.1111/1574-6941.12101 CrossRefGoogle Scholar
  47. 47.
    Romaní AM, Sabater S (2000) Influence of algal biomass on extracellular enzyme activity in river biofilms. Microb Ecol 41:16–24.  https://doi.org/10.1007/s002480000041 CrossRefGoogle Scholar
  48. 48.
    Sinsabaugh RL, Follstad JJ (2011) Ecoenzymatic stoichiometry of recalcitrant organic matter decomposition: the growth rate hypothesis in reverse. Biogeochemistry 102:31–43.  https://doi.org/10.1007/s10533-010-9482-x CrossRefGoogle Scholar
  49. 49.
    Burnham KP, Anderson DR (2002) Model selection and multimodel inference. A practical information-theoretic approach, 2nd ed. Springer-Verlag, New yorkGoogle Scholar
  50. 50.
    Calcagno V, de Mazancourt C (2010) Glmulti: an R package for easy automated model selection with (generalized) linear models. J Stat Softw 34(12):1–29Google Scholar
  51. 51.
    Grömping U (2006) Relative importance for linear regression in R: the package relaimpo. J Stat Softwater 17(1):1–27Google Scholar
  52. 52.
    Muggeo VMR (2008) segmented: an R package to fit regression models with broken-line relationships. R NEWS 8:120–125Google Scholar
  53. 53.
    R Core Team (2017) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/
  54. 54.
    Palmtag J, Hugelius G, Lashchinskiy N et al (2015) Storage, landscape distribution, and burial history of soil organic matter in contrasting areas of continuous permafrost. Arct Antarct Alp Res 47:71–88.  https://doi.org/10.1657/AAAR0014-027 CrossRefGoogle Scholar
  55. 55.
    Freeman C, Ostle N, Kang H (2001) An enzymic “latch” on a global carbon store. Nature 409:149.  https://doi.org/10.1038/35051650 CrossRefGoogle Scholar
  56. 56.
    Kawahigashi M, Kaiser K, Kalbitz K et al (2004) Dissolved organic matter in small streams along a gradient from discontinuous to continuous permafrost. Glob Chang Biol 10:1576–1586.  https://doi.org/10.1111/j.1365-2486.2004.08827.x CrossRefGoogle Scholar
  57. 57.
    Rier ST, Shirvinski JM, Kinek KC (2014) In situ light and phosphorus manipulations reveal potential role of biofilm algae in enhancing enzyme-mediated decomposition of organic matter in streams. Freshw Biol 59:1039–1051.  https://doi.org/10.1111/fwb.12327 CrossRefGoogle Scholar
  58. 58.
    Cory RM, Ward CP, Crump BC, Kling GW (2014) Sunlight controls water column processing of carbon in arctic fresh waters. Science(80) 345:925–928.  https://doi.org/10.1126/science.1253119 CrossRefGoogle Scholar
  59. 59.
    Palmtag J, Cable S, Christiansen HH et al (2017) Improved landscape partitioning and estimates of deep storage of soil organic carbon in the Zackenberg area (NE Greenland) using geomorphological landforms. Cryosph Discuss In Review.  https://doi.org/10.5194/tc-2017-255
  60. 60.
    Tank SE, Fellman JB, Hood E, Kritzberg ES (2018) Beyond respiration: controls on lateral carbon fluxes across the terrestrial-aquatic interface. Limnol Oceanogr Lett.  https://doi.org/10.1002/lol2.10065
  61. 61.
    Craine JM, Brookshire ENJ, Cramer MD et al (2015) Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 396:1–26.  https://doi.org/10.1007/s11104-015-2542-1 CrossRefGoogle Scholar
  62. 62.
    Christian JR, Karl DM (1995) Bacterial ectoenzymes in marine waters: activity ratios and temperature responses in three oceanographic provinces. Limnol Oceanogr 40:1042–1049.  https://doi.org/10.4319/lo.1995.40.6.1042 CrossRefGoogle Scholar
  63. 63.
    Margalef O, Sardans J, Fernández-Martínez M et al (2017) Global patterns of phosphatase activity in natural soils. Sci Rep 7:1–13.  https://doi.org/10.1038/s41598-017-01418-8 CrossRefGoogle Scholar
  64. 64.
    Wallenstein MD, Mcmahon SK, Schimel JP (2009) Seasonal variation in enzyme activities and temperature sensitivities in Arctic tundra soils. Glob Chang Biol 15:1631–1639.  https://doi.org/10.1111/j.1365-2486.2008.01819.x CrossRefGoogle Scholar
  65. 65.
    Ylla I, Romaní AM, Sabater S (2012) Labile and recalcitrant organic matter utilization by river biofilm under increasing water temperature. Microb Ecol 64:593–604.  https://doi.org/10.1007/s00248-012-0062-6 CrossRefGoogle Scholar
  66. 66.
    Frossard A, Gerull L, Mutz M, Gessner MO (2013) Litter supply as a driver of microbial activity and community structure on decomposing leaves: a test in experimental streams. Appl Environ Microbiol 79:4965–4973.  https://doi.org/10.1128/AEM.00747-13 CrossRefGoogle Scholar
  67. 67.
    Mulholland PJ, Rosemond A (1992) Periphyton response to longitudinal nutrient depletion in a woodland stream: evidence of upstream-downstream. J North Am Benthol Soc 11:405–419CrossRefGoogle Scholar
  68. 68.
    Amon RMW, Rinehart AJ, Duan S et al (2012) Dissolved organic matter sources in large Arctic rivers. Geochim Cosmochim Acta 94:217–237.  https://doi.org/10.1016/j.gca.2012.07.015 CrossRefGoogle Scholar
  69. 69.
    Wauthy M, Rautio M, Christoffersen KS et al (2018) Increasing dominance of terrigenous organic matter in circumpolar freshwaters due to permafrost thaw. Limnol Oceanogr Lett 3:186–198.  https://doi.org/10.1002/lol2.10063 CrossRefGoogle Scholar
  70. 70.
    Romaní AM, Vázquez E, Butturini A (2006) Microbial availability and size fractionation of dissolved organic carbon after drought in an intermittent stream: biogeochemical link across the stream-riparian interface. Microb Ecol 52:501–512.  https://doi.org/10.1007/s00248-006-9112-2 CrossRefGoogle Scholar
  71. 71.
    Sinsabaugh RL, Gallo ME, Lauber C et al (2005) Extracellular enzyme activities and soil organic matter dynamics for Northern Hardwood forests receiving simulated nitrogen deposition. Biogeochemistry 75:201–215CrossRefGoogle Scholar
  72. 72.
    Myrstener M, Rocher-Ros G, Burrows RM et al (2018) Persistent nitrogen limitation of stream biofilm communities along climate gradients in the arctic. Glob Chang Biol 24:3680–3691CrossRefGoogle Scholar
  73. 73.
    Houlton BZ, Dahlgren RA (2018) Convergent evidence for widespread rock nitrogen sources in Earth’s surface environment. Science (80-) 62:58–62CrossRefGoogle Scholar
  74. 74.
    Ylla I, Borrego CM, Romaní AM, Sabater S (2009) Availability of glucose and light modulates the structure and function of a microbial biofilm. FEMS Microbiol Ecol 69:27–42.  https://doi.org/10.1111/j.1574-6941.2009.00689.x CrossRefGoogle Scholar
  75. 75.
    Chróst RJ (1991) Environmental control of the synthesis and activity of aquatic microbial ectoenzymes. In: Chróst RJ (ed) Microbial enzymes in aquatic environments. Brock/Springer, New York, pp 29–59CrossRefGoogle Scholar
  76. 76.
    Whitton B (1991) Use of phosphatase assays with algae to assess phosphorous status of aquatic environments. In: Jeffrey D, Madden B (eds) Bioindicators and environmental management. Academic Press, London, pp 295–310Google Scholar
  77. 77.
    Chrost RJ (1986) Algal-bacterial metabolic coupling in the carbon and phosphorus cycle in lakes. In: Meguar F, Gantar M (eds) Perspectives in microbial ecology. Slovene Society for Microbiology, pp 360–366Google Scholar
  78. 78.
    Walker MD, Wahren CH, Hollister RD et al (2006) Plant community responses to experimental warming across the tundra biome. Proc Natl Acad Sci U S A 103:1342–1346.  https://doi.org/10.1073/pnas.0503198103 CrossRefGoogle Scholar
  79. 79.
    Nabe-Nielsen J, Normand S, Hui FKC et al (2017) Plant community composition and diversity in the high arctic tundra: from the present to the future. Ecol Evol 7:1–10.  https://doi.org/10.1002/ece3.3496 CrossRefGoogle Scholar
  80. 80.
    Freeman C, Evans CD, Monteith DT et al (2001) Export of organic carbon from peat soils. Nature 412:785–785.  https://doi.org/10.1038/35090628 CrossRefGoogle Scholar
  81. 81.
    Ylla I, Canhoto C, Romaní AM (2014) Effects of warming on stream biofilm organic matter use capabilities. Microb Ecol 68:132–145.  https://doi.org/10.1007/s00248-014-0406-5 CrossRefGoogle Scholar
  82. 82.
    Holtgrieve GW, Schindler DE, Hobbs WO et al (2011) A coherent signature of anthropogenic nitrogen deposition to remote watersheds of the Northern Hemisphere. Science (80-) 334:1545–1548.  https://doi.org/10.1126/science.1212267 CrossRefGoogle Scholar
  83. 83.
    Kühnel R, Roberts TJ, Björkman MP et al (2011) 20-Year climatology of NO3- and NH4+ wet deposition at Ny-Ålesund, Svalvard. Adv Meteorol 2011:1–10.  https://doi.org/10.1155/2011/406508 CrossRefGoogle Scholar
  84. 84.
    Tye AM, Heaton THE (2007) Chemical and isotopic characteristics of weathering and nitrogen release in non-glacial drainage waters on Arctic tundra. Geochim Cosmochim Acta 71:4188–4205.  https://doi.org/10.1016/j.gca.2007.06.040 CrossRefGoogle Scholar
  85. 85.
    Louiseize NL, Lafrenière MJ, Hastings MG (2014) Stable isotopic evidence of enhanced export of microbially derived NO-3 following active layer slope disturbance in the Canadian High Arctic. Biogeochemistry 121:565–580.  https://doi.org/10.1007/s10533-014-0023-x CrossRefGoogle Scholar
  86. 86.
    Harms TK, Jones JB (2012) Thaw depth determines reaction and transport of inorganic nitrogen in valley bottom permafrost soils. Glob Chang Biol 18:2958–2968.  https://doi.org/10.1111/j.1365-2486.2012.02731.x CrossRefGoogle Scholar
  87. 87.
    Lamoureux SF, Lafreniére MJ (2009) Fluvial impact of extensive active layer detachments, Cape Bounty , Melville Island. Arct Antarct Alp Res 41:59–68CrossRefGoogle Scholar
  88. 88.
    Docherty CL, Hannah DM, Riis T et al (2017) Large thermo-erosional tunnel for a river in northeast Greenland. Polar Sci 14:1–5.  https://doi.org/10.1016/j.polar.2017.08.001 CrossRefGoogle Scholar
  89. 89.
    MacLean R, Oswood MW, Irons JG, McDowell WH (1999) The effect of permafrost on stream biogeochemistry: a case study of two streams in the Alaskan (U.S.A.) taiga. Biogeochemistry 47:239–267.  https://doi.org/10.1007/BF00992909 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of BioscienceAarhus UniversityAarhusDenmark
  2. 2.Catalan Institute for Water Research (ICRA)GironaSpain
  3. 3.Aarhus Institute of Advanced StudiesAarhus UniversityAarhusDenmark
  4. 4.Department of Health and Environmental SciencesXi’an Jiaotong-Liverpool UniversitySuzhouChina
  5. 5.Institute of Aquatic EcologyUniversity of GironaGironaSpain

Personalised recommendations