Advertisement

Microbial Ecology

, Volume 78, Issue 3, pp 589–602 | Cite as

Impacts of Arsenic and Antimony Co-Contamination on Sedimentary Microbial Communities in Rivers with Different Pollution Gradients

  • Xiaoxu Sun
  • Baoqin Li
  • Feng Han
  • Enzong Xiao
  • Tangfu Xiao
  • Weimin SunEmail author
Environmental Microbiology

Abstract

Arsenic (As) and antimony (Sb) are both toxic metalloids that are of primary concern for human health. Mining activity has introduced elevated levels of arsenic and antimony into the rivers and has increased the risks of drinking water contamination in China. Due to their mobility, the majority of the metalloids originating from mining activities are deposited in the river sediments. Thus, depending on various geochemical conditions, sediment could either be a sink or source for As and Sb in the water column. Microbes are key mediators for biogeochemical transformation and can both mobilize or precipitate As and Sb. To further understand the microbial community responses to As and Sb contamination, sediment samples with different contamination levels were collected from three rivers. The result of the study suggested that the major portions of As and Sb were in strong association with the sediment matrix and considered nonbioavailable. These fractions, however, were also suggested to have profound influences on the microbial community composition. As and Sb contamination caused strong reductions in microbial diversity in the heavily contaminated river sediments. Microorganisms were more sensitive to As comparing to Sb, as revealed by the co-occurrence network and random forest predictions. Operational taxonomic units (OTUs) that were potentially involved in As and Sb metabolism, such as Anaerolinea, Sphingomonas, and Opitutus, were enriched in the heavily contaminated samples. In contrast, many keystone taxa, including members of the Hyphomicrobiaceae and Bradyrhizobiaceae families, were inhibited by metalloid contamination, which could further impair crucial environmental services provided by these members.

Keywords

Antimony Arsenic Co-occurrence network Microbial community Random forest 

Notes

Acknowledgements

We thank Hanna Han and her team from Shenzhen Ecogene Co., Ltd. for their technical service.

Funding Information

This research was funded by GDAS’ Project of Science and Technology development (2017GDASCX-0106, 2019GDASYL-0103047, 2019GDASYL-0302006, and 2018GDASCX-0601), the National Natural Science Foundation of China (41771301, 41420104007), the High-level Leading Talent Introduction Program of GDAS (2016GDASRC-0103), and the Local Innovative and Research Teams Project of Guangdong Pearl River Talents Program (2017BT01Z176).

References

  1. 1.
    Hughes MF (2004) IARC monographs on the evaluation of carcinogenic risks to humans. In: Int. Agency Res. CancerGoogle Scholar
  2. 2.
    Matschullat J (2000) Arsenic in the geosphere—a review. Sci. Total Environ. 249:297–312.  https://doi.org/10.1016/S0048-9697(99)00524-0 Google Scholar
  3. 3.
    Rizoulis A, Al Lawati AWM, Pancost BRD et al (2014) Microbially mediated reduction of FeIII and AsV in Cambodian sediments amended with 13C-labelled hexadecane and kerogen. Environ Chem 11:538–546Google Scholar
  4. 4.
    Mitsunobu S, Harada T, Takahashi Y (2006) Comparison of antimony behavior with that of arsenic under various soil redox conditions. Environ Sci Technol 40:7270–7276.  https://doi.org/10.1021/es060694x Google Scholar
  5. 5.
    Cavallo D, Iavicoli I, Setini A, Marinaccio A, Perniconi B, Carelli G, Iavicoli S (2002) Genotoxic risk and oxidative DNA damage in workers exposed to antimony trioxide. Environ. Mol. Mutagen. 40:184–189.  https://doi.org/10.1002/em.10102 Google Scholar
  6. 6.
    Gebel T (1997) Arsenic and antimony: comparative approach on mechanistic toxicology. Chem. Biol. Interact. 107:131–144.  https://doi.org/10.1016/S0009-2797(97)00087-2 Google Scholar
  7. 7.
    Fu Z, Wu F, Amarasiriwardena D, Mo C, Liu B, Zhu J, Deng Q, Liao H (2010) Antimony, arsenic and mercury in the aquatic environment and fish in a large antimony mining area in Hunan, China. Sci. Total Environ. 408:3403–3410.  https://doi.org/10.1016/j.scitotenv.2010.04.031 Google Scholar
  8. 8.
    Filella M, Belzile N, Chen YW (2002) Antimony in the environment: a review focused on natural waters: I. Occurence. Earth Sci Rev 57:125–176.  https://doi.org/10.1016/S0012-8252(01)00070-8 Google Scholar
  9. 9.
    Sun W, Xiao E, Dong Y, Tang S, Krumins V, Ning Z, Sun M, Zhao Y, Wu S, Xiao T (2016) Profiling microbial community in a watershed heavily contaminated by an active antimony (Sb) mine in Southwest China. Sci. Total Environ. 550:297–308.  https://doi.org/10.1016/j.scitotenv.2016.01.090 Google Scholar
  10. 10.
    He M, Wang X, Wu F, Fu Z (2012) Antimony pollution in China. Sci. Total Environ. 421–422:41–50.  https://doi.org/10.1016/j.scitotenv.2011.06.009 Google Scholar
  11. 11.
    Filella M, Williams PA, Belzile N (2009) Antimony in the environment: knowns and unknowns. Environ. Chem. 6:95–105.  https://doi.org/10.1071/EN09007 Google Scholar
  12. 12.
    Courtin-Nomade A, Rakotoarisoa O, Bril H, Grybos M, Forestier L, Foucher F, Kunz M (2012) Weathering of Sb-rich mining and smelting residues: insight in solid speciation and soil bacteria toxicity. Chem. Erde 72:29–39.  https://doi.org/10.1016/j.chemer.2012.02.004 Google Scholar
  13. 13.
    Kelepertsis A, Alexakis D, Skordas K (2006) Arsenic, antimony and other toxic elements in the drinking water of Eastern Thessaly in Greece and its possible effects on human health. Environ. Geol. 50:76–84.  https://doi.org/10.1007/s00254-006-0188-2 Google Scholar
  14. 14.
    Anawar HM, Freitas MC, Canha N, Regina IS (2011) Arsenic, antimony, and other trace element contamination in a mine tailings affected area and uptake by tolerant plant species. Environ. Geochem. Health 33:353–362.  https://doi.org/10.1007/s10653-011-9378-2 Google Scholar
  15. 15.
    Hiller E, Lalinská B, Chovan M, Jurkovič Ľ, Klimko T, Jankulár M, Hovorič R, Šottník P, Fľaková R, Ženišová Z, Ondrejková I (2012) Arsenic and antimony contamination of waters, stream sediments and soils in the vicinity of abandoned antimony mines in the Western Carpathians, Slovakia. Appl. Geochem. 27:598–614.  https://doi.org/10.1016/j.apgeochem.2011.12.005 Google Scholar
  16. 16.
    Telford K, Maher W, Krikowa F, Foster S, Ellwood MJ, Ashley PM, Lockwood PV, Wilson SC (2009) Bioaccumulation of antimony and arsenic in a highly contaminated stream adjacent to the Hillgrove Mine, NSW, Australia. Environ. Chem. 6:133–143.  https://doi.org/10.1071/EN08097 Google Scholar
  17. 17.
    Guo H, Tseng Y (2000) Arsenic in drinking water and bladder cancer: comparison between studies based on cancer registry and death certificates. Environ. Geochem. Health 22:83–91Google Scholar
  18. 18.
    Van Geen A, Bostick BC, Thi Kim Trang P et al (2013) Retardation of arsenic transport through a Pleistocene aquifer. Nature 501:204–207.  https://doi.org/10.1038/nature12444 Google Scholar
  19. 19.
    Pi J, Yamauchi H, Kumagai Y, Sun G, Yoshida T, Aikawa H, Hopenhayn-Rich C, Shimojo N (2002) Evidence for induction of oxidative stress caused by chronic exposure of Chinese residents to arsenic contained in drinking water. Environ. Health Perspect. 110:331–336.  https://doi.org/10.1289/ehp.02110331 Google Scholar
  20. 20.
    Li S, Xiao T, Zheng B (2012) Medical geology of arsenic, selenium and thallium in China. Sci. Total Environ. 421–422:31–40.  https://doi.org/10.1016/j.scitotenv.2011.02.040 Google Scholar
  21. 21.
    Chowdhury UK, Biswas BK, Chowdhury TR, Samanta G, Mandal BK, Basu GC, Chanda CR, Lodh D, Saha KC, Mukherjee SK, Roy S, Kabir S, Quamruzzaman Q, Chakraborti D (2000) Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ. Health Perspect. 108:393–397.  https://doi.org/10.1289/ehp.00108393 Google Scholar
  22. 22.
    Tsuda T, Babazono A, Yamamoto E, Kurumatani N, Mino Y, Ogawa T, Kishi Y, Aoyama H (1995) Ingested arsenic and internal cancer: a historical cohort study followed for 33 years. Am. J. Epidemiol. 141:198–209.  https://doi.org/10.1093/oxfordjournals.aje.a117421 Google Scholar
  23. 23.
    Wen B, Zhou J, Zhou A, Liu C, Xie L (2016) Sources, migration and transformation of antimony contamination in the water environment of Xikuangshan, China: evidence from geochemical and stable isotope (S, Sr) signatures. Sci. Total Environ. 569–570:114–122.  https://doi.org/10.1016/j.scitotenv.2016.05.124 Google Scholar
  24. 24.
    Berg M, Stengel C, Trang PTK et al (2007) Magnitude of arsenic pollution in the Mekong and Red River Deltas—Cambodia and Vietnam. Sci. Total Environ. 372:413–425.  https://doi.org/10.1016/j.scitotenv.2006.09.010 Google Scholar
  25. 25.
    Niazi NK, Singh B, Shah P (2011) Arsenic speciation and phytoavailability in contaminated soils using a sequential extraction procedure and XANES spectroscopy. Environ Sci Technol 45:7135–7142Google Scholar
  26. 26.
    Stollenwerk KG (2003) Geochemical processes controlling transport of arsenic in groundwater: a review of adsorption. In: Arsenic in ground water. Springer, pp 67–100Google Scholar
  27. 27.
    Kim EJ, Yoo JC, Baek K (2014) Arsenic speciation and bioaccessibility in arsenic-contaminated soils: sequential extraction and mineralogical investigation. Environ. Pollut. 186:29–35.  https://doi.org/10.1016/j.envpol.2013.11.032 Google Scholar
  28. 28.
    Lloyd JR, Oremland RS (2006) Microbial transformations of arsenic in the environment: from soda lakes to aquifers. Elements 2:85–90.  https://doi.org/10.2113/gselements.2.2.85 Google Scholar
  29. 29.
    Ji G, Silver S (1992) Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc. Natl. Acad. Sci. 89:9474–9478Google Scholar
  30. 30.
    Lehr CR, Kashyap DR, McDermott TR (2007) New insights into microbial oxidation of antimony and arsenic. Appl. Environ. Microbiol. 73:2386–2389.  https://doi.org/10.1128/AEM.02789-06 Google Scholar
  31. 31.
    Carlin A, Shi W, Dey S, Rosen BP (1995) The ars operon of Escherichia coli confers arsenical and antimonial resistance. J. Bacteriol. 177:981–986Google Scholar
  32. 32.
    Wang Q, Warelow TP, Kang YS, Romano C, Osborne TH, Lehr CR, Bothner B, McDermott TR, Santini JM, Wang G (2015) Arsenite oxidase also functions as an antimonite oxidase. Appl. Environ. Microbiol. 81:1959–1965.  https://doi.org/10.1128/AEM.02981-14 Google Scholar
  33. 33.
    Mateos LM, Ordóñez E, Letek M, Gil JA (2006) Corynebacterium glutamicumas a model bacterium for the bioremediation of arsenic. Int. Microbiol. 9:207–215Google Scholar
  34. 34.
    Zhang G, Ouyang X, Li H, Fu Z, Chen J (2016) Bioremoval of antimony from contaminated waters by a mixed batch culture of sulfate-reducing bacteria. Int. Biodeterior. Biodegrad. 115:148–155.  https://doi.org/10.1016/j.ibiod.2016.08.007 Google Scholar
  35. 35.
    Sun W, Xiao E, Häggblom M, Krumins V, Dong Y, Sun X, Li F, Wang Q, Li B, Yan B (2018) Bacterial survival strategies in an alkaline tailing site and the physiological mechanisms of dominant phylotypes as revealed by metagenomic analyses. Environ Sci Technol. 52:13370–13380.  https://doi.org/10.1021/acs.est.8b03853 Google Scholar
  36. 36.
    Sun W, Xiao E, Krumins V, Häggblom MM, Dong Y, Pu Z, Li B, Wang Q, Xiao T, Li F (2018) Rhizosphere microbial response to multiple metal(loid)s in different contaminated arable soils indicates crop-specific metal-microbe interactions. Appl. Environ. Microbiol. 84:1–15.  https://doi.org/10.1128/AEM.00701-18 Google Scholar
  37. 37.
    Wang N, Zhang S, He M (2018) Bacterial community profile of contaminated soils in a typical antimony mining site. Environ. Sci. Pollut. Res. 25:141–152.  https://doi.org/10.1007/s11356-016-8159-y Google Scholar
  38. 38.
    Luo J, Bai Y, Liang J, Qu J (2014) Metagenomic approach reveals variation of microbes with arsenic and antimony metabolism genes from highly contaminated soil. PLoS One 9:e108185.  https://doi.org/10.1371/journal.pone.0108185 Google Scholar
  39. 39.
    Xiao E, Krumins V, Xiao T, Dong Y, Tang S, Ning Z, Huang Z, Sun W (2017) Depth-resolved microbial community analyses in two contrasting soil cores contaminated by antimony and arsenic. Environ. Pollut. 221:244–255.  https://doi.org/10.1016/j.envpol.2016.11.071 Google Scholar
  40. 40.
    Sun W, Xiao E, Xiao T, Krumins V, Wang Q, Häggblom M, Dong Y, Tang S, Hu M, Li B, Xia B, Liu W (2017) Response of soil microbial communities to elevated antimony and arsenic contamination indicates the relationship between the innate microbiota and contaminant fractions. Environ Sci Technol 51:9165–9175.  https://doi.org/10.1021/acs.est.7b00294 Google Scholar
  41. 41.
    Kataoka T, Mitsunobu S, Hamamura N (2018) Influence of the chemical form of antimony on soil microbial community structure and arsenite oxidation activity. Microbes Environ. 00:214–221.  https://doi.org/10.1264/jsme2.ME17182 Google Scholar
  42. 42.
    Li J, Wang Q, Oremland RS, Kulp TR, Rensing C, Wang G (2016) Microbial antimony biogeochemistry: enzymes, regulation, and related metabolic pathways. Appl. Environ. Microbiol. 82:5482–5495.  https://doi.org/10.1128/AEM.01375-16 Google Scholar
  43. 43.
    Sun W, Xiao E, Krumins V, Dong Y, Xiao T, Ning Z, Chen H, Xiao Q (2016) Characterization of the microbial community composition and the distribution of Fe-metabolizing bacteria in a creek contaminated by acid mine drainage. Appl. Microbiol. Biotechnol. 100:8523–8535.  https://doi.org/10.1007/s00253-016-7653-y Google Scholar
  44. 44.
    Wenzel WW, Kirchbaumer N, Prohaska T, Stingeder G, Lombi E, Adriano DC (2001) Arsenic fractionation in soils using an improved sequential extraction procedure. Anal. Chim. Acta 436:309–323.  https://doi.org/10.1016/S0003-2670(01)00924-2 Google Scholar
  45. 45.
    Ge Z, Wei C (2013) Simultaneous analysis of SbIII, SbV and TMSb by high performance liquid chromatography–inductively coupled plasma–mass spectrometry detection: application to antimony speciation in soil samples. J. Chromatogr. Sci. 51:391–399.  https://doi.org/10.1093/chromsci/bms153 Google Scholar
  46. 46.
    Parada AE, Needham DM, Fuhrman JA (2016) Every base matters: assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. Environ. Microbiol. 18:1403–1414.  https://doi.org/10.1111/1462-2920.13023 Google Scholar
  47. 47.
    Herbold CW, Pelikan C, Kuzyk O, Hausmann B, Angel R, Berry D, Loy A (2015) A flexible and economical barcoding approach for highly multiplexed amplicon sequencing of diverse target genes. Front. Microbiol. 6:1–8.  https://doi.org/10.3389/fmicb.2015.00731 Google Scholar
  48. 48.
    Green SJ, Venkatramanan R, Naqib A (2015) Deconstructing the polymerase chain reaction: understanding and correcting bias associated with primer degeneracies and primer-template mismatches. PLoS One 10:1–21.  https://doi.org/10.1371/journal.pone.0128122 Google Scholar
  49. 49.
    Bybee SM, Bracken-Grissom H, Haynes BD, Hermansen RA, Byers RL, Clement MJ, Udall JA, Wilcox ER, Crandall KA (2011) Targeted amplicon sequencing (TAS): a scalable next-gen approach to multilocus, multitaxa phylogenetics. Genome Biol Evol 3:1312–1323.  https://doi.org/10.1093/gbe/evr106 Google Scholar
  50. 50.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75:7537–7541.  https://doi.org/10.1128/AEM.01541-09 Google Scholar
  51. 51.
    Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10:996–998.  https://doi.org/10.1038/nmeth.2604 Google Scholar
  52. 52.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261–5267.  https://doi.org/10.1128/AEM.00062-07 Google Scholar
  53. 53.
    DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72:5069–5072.  https://doi.org/10.1128/AEM.03006-05 Google Scholar
  54. 54.
    McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217.  https://doi.org/10.1371/journal.pone.0061217 Google Scholar
  55. 55.
    Ssekagiri A, Sloan W, Ijaz U (2017) microbiomeSeq: an R package for microbial community analysis in an environmental context. In: ISCB Africa ASBCB conferenceGoogle Scholar
  56. 56.
    Wickham H (2016) ggplot2:Elegant Graphics for Data Analysis. Springer-Verlaag, New York.http://ggplot2.org
  57. 57.
    Wang Q, Xie Z, Li F (2015) Using ensemble models to identify and apportion heavy metal pollution sources in agricultural soils on a local scale. Environ. Pollut. 206:227–235.  https://doi.org/10.1016/j.envpol.2015.06.040 Google Scholar
  58. 58.
    Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504.  https://doi.org/10.1101/gr.1239303.metabolite Google Scholar
  59. 59.
    Newman MEJ (2006) Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103:8577–8582.  https://doi.org/10.1073/pnas.0601602103 Google Scholar
  60. 60.
    Banerjee S, Schlaeppi K, van der Heijden MGA (2018) Keystone taxa as drivers of microbiome structure and functioning. Nat Rev Microbiol 16:1–10.  https://doi.org/10.1038/s41579-018-0024-1 Google Scholar
  61. 61.
    Wang S (2002) Present situation and sustainable development of antimony resources in China. China Met Bull 47:6–10 (in Chinese with English abstract)Google Scholar
  62. 62.
    Casiot C, Ujevic M, Munoz M, Seidel JL, Elbaz-Poulichet F (2007) Antimony and arsenic mobility in a creek draining an antimony mine abandoned 85 years ago (upper Orb basin, France). Appl. Geochem. 22:788–798.  https://doi.org/10.1016/j.apgeochem.2006.11.007 Google Scholar
  63. 63.
    Arrigo KR (2005) Marine microorgansisms and global nutrient cycles. Nature 437:349–355.  https://doi.org/10.1038/nature0415 Google Scholar
  64. 64.
    Falkowski PG, Fenchel T, Delong EF (2008) The microbial engines that drive earth’s biogeochemical cycles. Science (80-) 320:1034–1039.  https://doi.org/10.1126/science.1153213 Google Scholar
  65. 65.
    Vesper DJ, White WB (2004) Spring and conduit sediments as storage reservoirs for heavy metals in karst aquifers. Environ. Geol. 45:481–493.  https://doi.org/10.1007/s00254-003-0899-6 Google Scholar
  66. 66.
    Wang X, He M, Xi J, Lu X (2011) Antimony distribution and mobility in rivers around the world’s largest antimony mine of Xikuangshan, Hunan Province, China. Microchem. J. 97:4–11.  https://doi.org/10.1016/j.microc.2010.05.011 Google Scholar
  67. 67.
    Buanuam J, Wennrich R (2010) Dynamic flow-through sequential extraction for assessment of fractional transformation and inter-element associations of arsenic in stabilized soil and sludge. J. Hazard. Mater. 184:849–854.  https://doi.org/10.1016/j.jhazmat.2010.08.119 Google Scholar
  68. 68.
    Filella M (2011) Antimony interactions with heterogeneous complexants in waters, sediments and soils: a review of data obtained in bulk samples. Earth Sci Rev 107:325–341.  https://doi.org/10.1016/j.earscirev.2011.04.002 Google Scholar
  69. 69.
    He M (2007) Distribution and phytoavailability of antimony at an antimony mining and smelting area, Hunan, China. Environ. Geochem. Health 29:209–219.  https://doi.org/10.1007/s10653-006-9066-9 Google Scholar
  70. 70.
    Rodriguez RR, Basta NT, Casteel SW, Armstrong FP, Ward DC (2003) Chemical extraction methods to assess bioavailable arsenic in soil and solid media. J. Environ. Qual. 32:876–884.  https://doi.org/10.2134/jeq2003.8760 Google Scholar
  71. 71.
    Craw D, Wilson N, Ashley PM (2004) Geochemical controls on the environmental mobility of Sb and As at mesothermal antimony and gold deposits. Appl. Earth Sci. 113:3–10.  https://doi.org/10.1179/037174504225004538 Google Scholar
  72. 72.
    Méndez-García C, Peláez AI, Mesa V et al (2015) Microbial diversity and metabolic networks in acid mine drainage habitats. Front. Microbiol. 6:1–17.  https://doi.org/10.3389/fmicb.2015.00475 Google Scholar
  73. 73.
    Sheik CS, Mitchell TW, Rizvi FZ, Rehman Y, Faisal M, Hasnain S, McInerney MJ, Krumholz LR (2012) Exposure of soil microbial communities to chromium and arsenic alters their diversity and structure. PLoS One 7:e40059.  https://doi.org/10.1371/journal.pone.0040059 Google Scholar
  74. 74.
    Wang Q, He M, Wang Y (2011) Influence of combined pollution of antimony and arsenic on culturable soil microbial populations and enzyme activities. Ecotoxicology 20:9–19.  https://doi.org/10.1007/s10646-010-0551-7 Google Scholar
  75. 75.
    Stebbing A (1982) Hormesis—the stimulation of growth by low-levels of inhibitors. Sci. Total Environ. 22:213–234.  https://doi.org/10.1016/0048-9697(82)90066-3 Google Scholar
  76. 76.
    Cai L, Liu G, Rensing C, Wang G (2009) Genes involved in arsenic transformation and resistance associated with different levels of arsenic-contaminated soils. BMC Microbiol. 9:1–11.  https://doi.org/10.1186/1471-2180-9-4 Google Scholar
  77. 77.
    Xiao KQ, Li LG, Ma LP, Zhang SY, Bao P, Zhang T, Zhu YG (2016) Metagenomic analysis revealed highly diverse microbial arsenic metabolism genes in paddy soils with low-arsenic contents. Environ. Pollut. 211:1–8.  https://doi.org/10.1016/j.envpol.2015.12.023 Google Scholar
  78. 78.
    Islam FS, Boothman C, Gault AG, Polya DA, Lloyd JR (2005) Potential role of the Fe(III)-reducing bacteria Geobacter and Geothrix in controlling arsenic solubility in Bengal delta sediments. Mineral. Mag. 69:865–875.  https://doi.org/10.1180/0026461056950294 Google Scholar
  79. 79.
    Burton ED, Johnston SG, Kraal P, Bush RT, Claff S (2013) Sulfate availability drives divergent evolution of arsenic speciation during microbially mediated reductive transformation of schwertmannite. Environ Sci Technol 47:2221–2229.  https://doi.org/10.1021/es303867t Google Scholar
  80. 80.
    Hudson-Edwards K, Santini J (2013) Arsenic-microbe-mineral interactions in mining-affected environments. Minerals 3:337–351.  https://doi.org/10.3390/min3040337 Google Scholar
  81. 81.
    Krantzberg G (1985) The influence of bioturbation on physical , chemical and biological parameters in aquatic environments : a review. Environ. Pollut. 39:99–122Google Scholar
  82. 82.
    Paulson JN, Stine OC, Barvo HC, Pop M (2013) Differential abundance analysis for microbial marker-gene surveys. Nat. Methods 10:1200–1202.  https://doi.org/10.1038/nmeth.2658 Google Scholar
  83. 83.
    Wang X, Rathinasabapathi B, De Oliveira LM et al (2012) Bacteria-mediated arsenic oxidation and reduction in the growth media of arsenic hyperaccumulator Pteris vittata. Environ Sci Technol 46:11259–11266.  https://doi.org/10.1021/es300454b Google Scholar
  84. 84.
    Mewis K, Armstrong Z, Song YC, Baldwin SA, Withers SG, Hallam SJ (2013) Biomining active cellulases from a mining bioremediation system. J. Biotechnol. 167:462–471.  https://doi.org/10.1016/j.jbiotec.2013.07.015 Google Scholar
  85. 85.
    Wilson RM, Cherrier J, Sarkodee-adoo J et al (2016) Tracing the intrusion of fossil carbon into coastal Louisiana macrofauna using natural 14C and 13C abundances. Deep Res II 129:89–95.  https://doi.org/10.1016/j.dsr2.2015.05.014 Google Scholar
  86. 86.
    Gu Y, Van Nostrand JD, Wu L et al (2017) Bacterial community and arsenic functional genes diversity in arsenic contaminated soils from different geographic locations. PLoS One 12:1–18.  https://doi.org/10.1371/journal.pone.0176696 Google Scholar
  87. 87.
    Gorra R, Webster G, Martin M, Celi L, Mapelli F, Weightman AJ (2012) Dynamic microbial community associated with iron-arsenic co-precipitation products from a groundwater storage system in Bangladesh. Microb. Ecol. 64:171–186.  https://doi.org/10.1007/s00248-012-0014-1 Google Scholar
  88. 88.
    Van Passel MWJ, Kant R, Palva A et al (2011) Genome sequence of the Verrucomicrobium Opitutus terrae PB90-1, an abundant inhabitant of rice paddy soil ecosystems. J. Bacteriol. 193:2367–2368.  https://doi.org/10.1128/JB.00228-11 Google Scholar
  89. 89.
    Chin KJ, Liesack W, Janssen PH (2001) Opitutus terrae gen. nov., sp. nov., to accommodate novel strains of the division “Verrucomicrobia” isolated from rice paddy soil. Int. J. Syst. Evol. Microbiol. 51:1965–1968Google Scholar
  90. 90.
    Das S, Liu CC, Jean JS, Liu T (2016) Dissimilatory arsenate reduction and in situ microbial activities and diversity in arsenic-rich groundwater of Chianan Plain, Southwestern Taiwan. Environ. Microbiol. 71:365–374.  https://doi.org/10.1007/s00248-015-0650-3 Google Scholar
  91. 91.
    Sultana M, Härtig C, Planer-Friedrich B, Seifert J, Schlömann M (2011) Bacterial communities in Bangladesh aquifers differing in aqueous arsenic concentration. Geomicrobiol J. 28:198–211.  https://doi.org/10.1080/01490451.2010.490078 Google Scholar
  92. 92.
    Guan X, Yan X, Li Y, Jiang B, Luo X, Chi X (2017) Diversity and arsenic-tolerance potential of bacterial communities from soil and sediments along a gold tailing contamination gradient. Can. J. Microbiol. 63:788–805.  https://doi.org/10.1139/cjm-2017-0214 Google Scholar
  93. 93.
    Balkwill DL, Fredrickson JK, Romine MF (2006) Sphingomonas and related genera. The prokaryotes. Springer, Berlin, pp 605–629Google Scholar
  94. 94.
    Macur RE, Wheeler JT, McDermott TR, Inskeep WP (2001) Microbial populations associated with the reduction and enhanced mobilization of arsenic in mine tailings. Environ Sci Technol 35:3676–3682.  https://doi.org/10.1021/es0105461 Google Scholar
  95. 95.
    Jackson CR, Dugas SL, Harrison KG (2005) Enumeration and characterization of arsenate-resistant bacteria in arsenic free soils. Soil Biol. Biochem. 37:2319–2322.  https://doi.org/10.1016/j.soilbio.2005.04.010 Google Scholar
  96. 96.
    Ambrožič Avguštin J, Žgur Bertok D, Kostanjšek R, Avguštin G (2013) Isolation and characterization of a novel violacein-like pigment producing psychrotrophic bacterial species Janthinobacterium svalbardensis sp. nov. Antonie van Leeuwenhoek. Int J Gen Mol. Microbiol 103:763–769.  https://doi.org/10.1007/s10482-012-9858-0 Google Scholar
  97. 97.
    Gallego V, Sánchez-Porro C, García MT, Ventosa A (2006) Massilia aurea sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 56:2449–2453.  https://doi.org/10.1099/ijs.0.64389-0 Google Scholar
  98. 98.
    Kleindienst S, Grim S, Sogin M, Bracco A, Crespo-Medina M, Joye SB (2016) Diverse, rare microbial taxa responded to the Deepwater Horizon deep-sea hydrocarbon plume. ISME J 10:400–415.  https://doi.org/10.1038/ismej.2015.121 Google Scholar
  99. 99.
    Zhao D, Shen F, Zeng J, Huang R, Yu Z, Wu QL (2016) Network analysis reveals seasonal variation of co-occurrence correlations between Cyanobacteria and other bacterioplankton. Sci. Total Environ. 573:817–825.  https://doi.org/10.1016/j.scitotenv.2016.08.150 Google Scholar
  100. 100.
    Lupatini M, Suleiman AKA, Jacques RJS, Antoniolli ZI, de Siqueira Ferreira Aã, Kuramae EE, Roesch LFW (2014) Network topology reveals high connectance levels and few key microbial genera within soils. Front Environ Sci 2:1–11.  https://doi.org/10.3389/fenvs.2014.00010 Google Scholar
  101. 101.
    Wang H, Wei Z, Mei L, Gu J, Yin S, Faust K, Raes J, Deng Y, Wang Y, Shen Q, Yin S (2017) Combined use of network inference tools identifies ecologically meaningful bacterial associations in a paddy soil. Soil Biol. Biochem. 105:227–235.  https://doi.org/10.1016/j.soilbio.2016.11.029 Google Scholar
  102. 102.
    Buckley DH, Huangyutitham V, Hsu S-F, Nelson TA (2007) Stable isotope probing with 15N2 reveals novel noncultivated diazotrophs in soil. Appl. Environ. Microbiol. 73:3196–3204.  https://doi.org/10.1128/AEM.02610-06 Google Scholar
  103. 103.
    Yang S, Wen X, Shi Y, Liebner S, Jin H, Perfumo A (2016) Hydrocarbon degraders establish at the costs of microbial richness , abundance and keystone taxa after crude oil contamination in permafrost environments. Sci. Rep. 6:37473.  https://doi.org/10.1038/srep37473 Google Scholar
  104. 104.
    Baron EJ, Summanen P, Downes J et al (1989) Bilophila wudsworthiu,gen.nov and sp. nov., a unique gram-negative anerobic rod recovered from appendicitis specimens and human feces. J. Gen. Microbiol. 13:3405–3411Google Scholar
  105. 105.
    Salinas MB, Fardeau ML, Cayol JL et al (2004) Petrobacter succinatimandens gen. nov., sp. nov., a moderately thermophilic, nitrate-reducing bacterium isolated from Australian oil well. Int. J. Syst. Evol. Microbiol. 54:645–649.  https://doi.org/10.1099/ijs.0.02732-0 Google Scholar
  106. 106.
    Morotomi M, Nagai F, Sakon H, Tanaka R (2009) Paraprevotella clara gen. nov., sp. nov. and Paraprevotella xylaniphila sp. nov., members of the family “Prevotellaceae” isolated from human faeces. Int. J. Syst. Evol. Microbiol. 59:1895–1900.  https://doi.org/10.1099/ijs.0.008169-0 Google Scholar
  107. 107.
    Widdel F (1987) New types of acetate-oxidizing, sulfate-reducing Desulfobacter species, D. hydrogenophilus sp. nov., D. latus sp. nov., and D. curvatus sp. nov. Arch. Microbiol. 148:286–291.  https://doi.org/10.1007/BF00456706 Google Scholar
  108. 108.
    Hyde ER, Luk B, Cron S, Kusic L, McCue T, Bauch T, Kaplan H, Tribble G, Petrosino JF, Bryan NS (2014) Characterization of the rat oral microbiome and the effects of dietary nitrate. Free Radic. Biol. Med. 77:249–257.  https://doi.org/10.1016/j.freeradbiomed.2014.09.017 Google Scholar
  109. 109.
    Mouquet N, Gravel D, Massol F, Calcagno V (2013) Extending the concept of keystone species to communities and ecosystems. Ecol. Lett. 16:1–8.  https://doi.org/10.1111/ele.12014 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and ManagementGuangdong Institute of Eco-environmental Science & TechnologyGuangzhouChina
  2. 2.Key Laboratory of Water Quality and Conservation in the Pearl River Delta, Ministry of Education, School of Environmental Science and EngineeringGuangzhou UniversityGuangzhouChina

Personalised recommendations