Advertisement

The Dynamic of a River Model Bacterial Community in Two Different Media Reveals a Divergent Succession and an Enhanced Growth of Most Strains Compared to Monocultures

  • Lise Goetghebuer
  • Mathias Bonal
  • Karoline Faust
  • Pierre Servais
  • Isabelle F. GeorgeEmail author
Microbiology of Aquatic Systems

Abstract

The dynamic of a community of 20 bacterial strains isolated from river water was followed in R2 broth and in autoclaved river water medium for 27 days in batch experiments. At an early stage of incubation, a fast-growing specialist strain, Acinetobater sp., dominated the community in both media. Later on, the community composition in both media diverged but was highly reproducible across replicates. In R2, several strains previously reported to degrade multiple simple carbon sources prevailed. In autoclaved river water, the community was more even and became dominated by several strains growing faster or exclusively in that medium. Those strains have been reported in the literature to degrade complex compounds. Their growth rate in the community was 1.5- to 7-fold greater than that observed in monoculture. Furthermore, those strains developed simultaneously in the community. Together, our results suggest the existence of cooperative interactions within the community incubated in autoclaved river water.

Keywords

River Bacteria Model community Growth rate Interactions 

Notes

Acknowledgments

The authors thank Adriana Anzil for her contribution to the experimental work. They also thank the reviewers for their careful reading of the manuscript and their constructive comments to improve it.

Funding information

This work was supported by the Fonds National de la Recherche Scientifique FRS-FNRS in the scope of the project “DYNAMO” [T.1037.14].

Supplementary material

248_2019_1322_MOESM1_ESM.docx (36 kb)
ESM 1 (DOCX 36 kb)
248_2019_1322_MOESM2_ESM.docx (130 kb)
ESM 2 (DOCX 129 kb)

References

  1. 1.
    Sarukhan J, Whyte A, Hassan R, et al (2005) Millenium Ecosystem Assessment: Ecosystems and human well-being. Island PressGoogle Scholar
  2. 2.
    Drury B, Rosi-Marshall E, Kelly JJ (2013) Wastewater treatment effluent reduces the abundance and diversity of benthic bacterial communities in urban and suburban Rivers. Appl. Environ. Microbiol. 79:1897–1905.  https://doi.org/10.1128/AEM.03527-12 Google Scholar
  3. 3.
    Gao Y, Wang C, Zhang W, di P, Yi N, Chen C (2017) Vertical and horizontal assemblage patterns of bacterial communities in a eutrophic river receiving domestic wastewater in Southeast China. Environ. Pollut. 230:469–478.  https://doi.org/10.1016/j.envpol.2017.06.081 Google Scholar
  4. 4.
    García-Armisen T, İnceoğlu Ö, Ouattara NK, Anzil A, Verbanck MA, Brion N, Servais P (2014) Seasonal variations and resilience of bacterial communities in a sewage polluted urban river. PLoS One 9:e92579.  https://doi.org/10.1371/journal.pone.0092579 Google Scholar
  5. 5.
    de Oliveira LFV, Margis R (2015) The source of the river as a nursery for microbial diversity. PLoS One 10:e0120608.  https://doi.org/10.1371/journal.pone.0120608 Google Scholar
  6. 6.
    Kaevska M, Videnska P, Sedlar K, Slana I (2016) Seasonal changes in microbial community composition in river water studied using 454-pyrosequencing. SpringerPlus 5(409):409.  https://doi.org/10.1186/s40064-016-2043-6 Google Scholar
  7. 7.
    Kolmakova OV, Gladyshev MI, Rozanov AS, Peltek SE, Trusova MY (2014) Spatial biodiversity of bacteria along the largest Arctic river determined by next-generation sequencing. FEMS Microbiol. Ecol. 89:442–450.  https://doi.org/10.1111/1574-6941.12355 Google Scholar
  8. 8.
    Niño-García JP, Ruiz-González C, del GPA (2016) Interactions between hydrology and water chemistry shape bacterioplankton biogeography across boreal freshwater networks. ISME J 10:1755–1766.  https://doi.org/10.1038/ismej.2015.226 Google Scholar
  9. 9.
    Logue JB, Lindström ES (2008) Biogeography of Bacterioplankton in inland waters. Fr. Rev. 1:99–114.  https://doi.org/10.1608/FRJ-1.1.9 Google Scholar
  10. 10.
    Read DS, Gweon HS, Bowes MJ, Newbold LK, Field D, Bailey MJ, Griffiths RI (2014) Catchment-scale biogeography of riverine bacterioplankton. ISME J 9:516–526.  https://doi.org/10.1038/ismej.2014.166 Google Scholar
  11. 11.
    Savio D, Sinclair L, Ijaz UZ, Parajka J, Reischer GH, Stadler P, Blaschke AP, Blöschl G, Mach RL, Kirschner AKT, Farnleitner AH, Eiler A (2015) Bacterial diversity along a 2 600 km river continuum. Environ. Microbiol. 17(12):4994–5007.  https://doi.org/10.1111/1462-2920.12886 Google Scholar
  12. 12.
    Staley C, Unno T, Gould TJ, Jarvis B, Phillips J, Cotner JB, Sadowsky MJ (2013) Application of Illumina next-generation sequencing to characterize the bacterial community of the upper Mississippi River. J. Appl. Microbiol. 115:1147–1158.  https://doi.org/10.1111/jam.12323 Google Scholar
  13. 13.
    Meziti A, Tsementzi D, Rodriguez-R LM, Hatt JK, Karayanni H, Kormas KA, Konstantinidis KT (2018) Quantifying the changes in genetic diversity within sequence-discrete bacterial populations across a spatial and temporal riverine gradient. ISME J 1.  https://doi.org/10.1038/s41396-018-0307-6
  14. 14.
    Allison SD, Martiny JBH (2008) Resistance, resilience, and redundancy in microbial communities. Proc. Natl. Acad. Sci. U. S. A. 105:11512–11519.  https://doi.org/10.1073/pnas.0801925105 Google Scholar
  15. 15.
    Schultz GE, Kovatch JJ, Anneken EM (2013) Bacterial diversity in a large, temperate, heavily modified river, as determined by pyrosequencing. Aquat. Microb. Ecol. 70:169–179.  https://doi.org/10.3354/ame01646 Google Scholar
  16. 16.
    Lindström ES, Langenheder S (2012) Local and regional factors influencing bacterial community assembly. Environ. Microbiol. Rep. 4:1–9.  https://doi.org/10.1111/j.1758-2229.2011.00257.x Google Scholar
  17. 17.
    Székely AJ, Berga M, Langenheder S (2013) Mechanisms determining the fate of dispersed bacterial communities in new environments. ISME J 7:61–71.  https://doi.org/10.1038/ismej.2012.80 Google Scholar
  18. 18.
    Portillo MC, Anderson SP, Fierer N (2012) Temporal variability in the diversity and composition of stream bacterioplankton communities. Environ. Microbiol. 14:2417–2428.  https://doi.org/10.1111/j.1462-2920.2012.02785.x Google Scholar
  19. 19.
    Xia N, Xia X, Liu T, Hu L, Zhu B, Zhang X, Dong J (2014) Characteristics of bacterial community in the water and surface sediment of the Yellow River, China, the largest turbid river in the world. J. Soils Sediments 14:1894–1904.  https://doi.org/10.1007/s11368-014-0974-5 Google Scholar
  20. 20.
    Zeglin LH (2015) Stream microbial diversity in response to environmental changes: review and synthesis of existing research. Aquat Microbiol 6:454–469.  https://doi.org/10.3389/fmicb.2015.00454 Google Scholar
  21. 21.
    Foster KR, Bell T (2012) Competition, not cooperation, dominates interactions among culturable microbial species. Curr Biol CB 22:1845–1850.  https://doi.org/10.1016/j.cub.2012.08.005 Google Scholar
  22. 22.
    Little AEF, Robinson CJ, Peterson SB, Raffa KF, Handelsman J (2008) Rules of engagement: interspecies interactions that regulate microbial communities. Annu. Rev. Microbiol. 62:375–401.  https://doi.org/10.1146/annurev.micro.030608.101423 Google Scholar
  23. 23.
    Garcia SL (2016) Mixed cultures as model communities: hunting for ubiquitous microorganisms, their partners, and interactions. Aquat. Microb. Ecol. 77:79–85.  https://doi.org/10.3354/ame01789 Google Scholar
  24. 24.
    Morris JJ, Lenski RE, Zinser ER (2012) The black queen hypothesis: evolution of dependencies through adaptive gene loss. mBio 3:e00036–e00012.  https://doi.org/10.1128/mBio.00036-12
  25. 25.
    Benner R (2003) 5—molecular indicators of the bioavailability of dissolved organic matter. In: Findlay SEG, Sinsabaugh RL (eds) Aquatic ecosystems. Academic Press, Burlington, pp 121–137Google Scholar
  26. 26.
    Seth EC, Taga ME (2014) Nutrient cross-feeding in the microbial world. Front. Microbiol. 5:350–356.  https://doi.org/10.3389/fmicb.2014.00350 Google Scholar
  27. 27.
    Stubbendieck RM, Vargas-Bautista C, Straight PD (2016) Bacterial communities: interactions to scale. Front. Microbiol. 7:1234–1253.  https://doi.org/10.3389/fmicb.2016.01234 Google Scholar
  28. 28.
    Jousset A, Schmid B, Scheu S, Eisenhauer N (2011) Genotypic richness and dissimilarity opposingly affect ecosystem functioning. Ecol. Lett. 14:537–545.  https://doi.org/10.1111/j.1461-0248.2011.01613.x Google Scholar
  29. 29.
    Hug LA, Co R (2018) It takes a village: microbial communities thrive through interactions and metabolic handoffs. mSystems 3:e00152–e00117.  https://doi.org/10.1128/mSystems.00152-17
  30. 30.
    Faust K, Raes J (2012) Microbial interactions: from networks to models. Nat Rev Microbiol 10:538–550.  https://doi.org/10.1038/nrmicro2832 Google Scholar
  31. 31.
    Fisher CK, Mehta P (2014) Identifying keystone species in the human gut microbiome from metagenomic Timeseries using sparse linear regression. PLoS One 9:e102451.  https://doi.org/10.1371/journal.pone.0102451 Google Scholar
  32. 32.
    Widder S, Besemer K, Singer GA, Ceola S, Bertuzzo E, Quince C, Sloan WT, Rinaldo A, Battin TJ (2014) Fluvial network organization imprints on microbial co-occurrence networks. Proc. Natl. Acad. Sci. 111:12799–12804.  https://doi.org/10.1073/pnas.1411723111 Google Scholar
  33. 33.
    Goetghebuer L, Servais P, George IF (2017) Carbon utilization profiles of river bacterial strains facing sole carbon sources suggest metabolic interactions. FEMS Microbiol. Lett. 364:1–6.  https://doi.org/10.1093/femsle/fnx098 Google Scholar
  34. 34.
    Brion N, Verbanck MA, Bauwens W, Elskens M, Chen M, Servais P (2015) Assessing the impacts of wastewater treatment implementation on the water quality of a small urban river over the past 40 years. Environ. Sci. Pollut. Res. 22:12720–12736.  https://doi.org/10.1007/s11356-015-4493-8 Google Scholar
  35. 35.
    Ghai R, Rodriguez-Valera F, McMahon KD et al (2011) Metagenomics of the water column in the pristine upper course of the Amazon River. PLoS One 6:e23785.  https://doi.org/10.1371/journal.pone.0023785 Google Scholar
  36. 36.
    Van Nevel S, Buysschaert B, De Roy K et al (2017) Flow cytometry for immediate follow-up of drinking water networks after maintenance. Water Res. 111:66–73.  https://doi.org/10.1016/j.watres.2016.12.040 Google Scholar
  37. 37.
    De Roy K, Clement L, Thas O et al (2012) Flow cytometry for fast microbial community fingerprinting. Water Res. 46:907–919.  https://doi.org/10.1016/j.watres.2011.11.076 Google Scholar
  38. 38.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. U. S. A. 108:4516–4522.  https://doi.org/10.1073/pnas.1000080107 Google Scholar
  39. 39.
    Apprill A, McNally S, Parsons R, Weber L (2015) Minor revision to V4 region SSU rRNA 806R gene primer greatly increases detection of SAR11 bacterioplankton. Aquat. Microb. Ecol. 75:129–137.  https://doi.org/10.3354/ame01753 Google Scholar
  40. 40.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Env Microbiol 75:7537–7541.  https://doi.org/10.1128/AEM.01541-09 Google Scholar
  41. 41.
    Clarke K, Gorley R (2006) PRIMER v7: user manual/tutorial. PRIMER-E Google Scholar
  42. 42.
    Pielou EC (1966) The measurement of diversity in different types of biological collections. J. Theor. Biol. 13:131–144.  https://doi.org/10.1016/0022-5193(66)90013-0 Google Scholar
  43. 43.
    Šimek K, Hornák K, Jezbera J et al (2006) Maximum growth rates and possible life strategies of different bacterioplankton groups in relation to phosphorus availability in a freshwater reservoir. Environ. Microbiol. 8:1613–1624.  https://doi.org/10.1111/j.1462-2920.2006.01053.x Google Scholar
  44. 44.
    Cottrell MT, Kirchman DL (2004) Single-cell analysis of bacterial growth, cell size, and community structure in the Delaware estuary. Aquat. Microb. Ecol. 34:139–149.  https://doi.org/10.3354/ame034139 Google Scholar
  45. 45.
    Yokokawa T, Nagata T, Cottrell MT, Kirchman DL (2004) Growth rate of the major phylogenetic bacterial groups in the Delaware estuary. Limnol. Oceanogr. 49:1620–1629.  https://doi.org/10.4319/lo.2004.49.5.1620 Google Scholar
  46. 46.
    Billen G, Servais P (1989) Modélisation des processus de dégradation bactérienne de la matière organique en milieu aquatique. In: Bianchi M, Marty D, Bertrand J-C et al (eds) Micro-organismes dans les écosystèmes océaniques. Masson, pp 219–245Google Scholar
  47. 47.
    Billen G, Servais P, Fontigny A (1988) Growth and mortality in bacterial populations dynamics of aquatic environments. Ergeb Limnol 31:173–183Google Scholar
  48. 48.
    Meybeck M (1982) Carbon, nitrogen, and phosphorus transport by world rivers. Am. J. Sci. 282:401–450.  https://doi.org/10.2475/ajs.282.4.401 Google Scholar
  49. 49.
    Eiler A, Langenheder S, Bertilsson S, Tranvik LJ (2003) Heterotrophic bacterial growth efficiency and community structure at different natural organic carbon concentrations. Appl. Environ. Microbiol. 69:3701–3709.  https://doi.org/10.1128/AEM.69.7.3701-3709.2003 Google Scholar
  50. 50.
    Kirchman DL, Dittel AI, Findlay SEG, Fischer D (2004) Changes in bacterial activity and community structure in response to dissolved organic matter in the Hudson River, New York. Aquat. Microb. Ecol. 35:243–257.  https://doi.org/10.3354/ame035243 Google Scholar
  51. 51.
    Langenheder S, Prosser JI (2008) Resource availability influences the diversity of a functional group of heterotrophic soil bacteria. Environ. Microbiol. 10:2245–2256.  https://doi.org/10.1111/j.1462-2920.2008.01647.x Google Scholar
  52. 52.
    Hiraishi A, Hoshino Y, Satoh T (1991) Rhodoferax fermentans gen. nov., sp. nov., a phototrophic purple nonsulfur bacterium previously referred to as the “Rhodocyclus gelatinosus-like” group. Arch. Microbiol. 155:330–336.  https://doi.org/10.1007/BF00243451 Google Scholar
  53. 53.
    Albert RA, Waas NE, Pavlons SC, Pearson JL, Ketelboeter L, Rossello-Mora R, Busse HJ (2013) Sphingobacterium psychroaquaticum sp. nov., a psychrophilic bacterium isolated from Lake Michigan water. Int. J. Syst. Evol. Microbiol. 63:952–958.  https://doi.org/10.1099/ijs.0.043844-0 Google Scholar
  54. 54.
    Dejonghe W, Berteloot E, Goris J, Boon N, Crul K, Maertens S, Hofte M, de Vos P, Verstraete W, Top EM (2003) Synergistic degradation of Linuron by a bacterial consortium and Isolation of a single linuron-degrading variovorax strain. Appl. Environ. Microbiol. 69:1532–1541.  https://doi.org/10.1128/AEM.69.3.1532-1541.2003 Google Scholar
  55. 55.
    Lambo AJ, Patel TR (1221) Isolation and characterization of a biphenyl-utilizing psychrotrophic bacterium, Hydrogenophaga taeniospiralis IA3-A, that cometabolize dichlorobiphenyls and polychlorinated biphenyl congeners in Aroclor. J. Basic Microbiol. 46:94–107.  https://doi.org/10.1002/jobm.200510006 Google Scholar
  56. 56.
    Parales RE, Harwood CS (2002) Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr. Opin. Microbiol. 5:266–273.  https://doi.org/10.1016/S1369-5274(02)00320-X Google Scholar
  57. 57.
    Wang Z, Yang Y, Sun W, Xie S, Liu Y (2014) Nonylphenol biodegradation in river sediment and associated shifts in community structures of bacteria and ammonia-oxidizing microorganisms. Ecotoxicol. Environ. Saf. 106:1–5.  https://doi.org/10.1016/j.ecoenv.2014.04.019 Google Scholar
  58. 58.
    Breugelmans P, Horemans B, Hofkens J, Springael D (2010) Response to mixed substrate feeds of the structure and activity of a linuron-degrading triple-species biofilm. Res. Microbiol. 161:660–666.  https://doi.org/10.1016/j.resmic.2010.06.006 Google Scholar
  59. 59.
    Rivett DW, Scheuerl T, Culbert CT, Mombrikotb SB, Johnstone E, Barraclough TG, Bell T (2016) Resource-dependent attenuation of species interactions during bacterial succession. ISME J 10(9):2259–2268.  https://doi.org/10.1038/ismej.2016.11 Google Scholar
  60. 60.
    Goldford JE, Lu N, Bajic D et al (2018) Emergent simplicity in microbial community assembly. Science 361(6401):469–474.  https://doi.org/10.1126/science.aat1168 Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Ecology of Aquatic SystemsUniversité libre de BruxellesBrusselsBelgium
  2. 2.Laboratory of Molecular Bacteriology (Rega Institute)Katholieke Universiteit LeuvenLeuvenBelgium

Personalised recommendations