Advertisement

Microbial Ecology

, Volume 78, Issue 1, pp 170–184 | Cite as

Core and Dynamic Microbial Communities of Two Invasive Ascidians: Can Host–Symbiont Dynamics Plasticity Affect Invasion Capacity?

  • Hila Dror
  • Lion Novak
  • James S. Evans
  • Susanna López-Legentil
  • Noa ShenkarEmail author
Invertebrate Microbiology

Abstract

Ascidians (Chordata, Ascidiacea) are considered to be prominent marine invaders, able to tolerate highly polluted environments and fluctuations in salinity and temperature. Here, we examined the seasonal and spatial dynamics of the microbial communities in the inner-tunic of two invasive ascidians, Styela plicata (Lesueur 1823) and Herdmania momus (Savigny 1816), in order to investigate the changes that occur in the microbiome of non-indigenous ascidians in different environments. Microbial communities were characterized using next-generation sequencing of partial (V4) 16S rRNA gene sequences. A clear differentiation between the ascidian-associated microbiome and bacterioplankton was observed, and two distinct sets of operational taxonomic units (OTUs), one core and the other dynamic, were recovered from both species. The relative abundance of the dynamic OTUs in H. momus was higher than in S. plicata, for which core OTU structure was maintained independently of location. Ten and seventeen core OTUs were identified in S. plicata and H. momus, respectively, including taxa with reported capabilities of carbon fixing, ammonia oxidization, denitrification, and heavy-metal processing. The ascidian-sourced dynamic OTUs clustered in response to site and season but significantly differed from the bacterioplankton community structure. These findings suggest that the associations between invasive ascidians and their symbionts may enhance host functionality while maintaining host adaptability to changing environmental conditions.

Keywords

Introduced species Microbiome Tunicate Lessepsian invasion Herdmania momus Styela plicata 

Notes

Acknowledgements

We thank L. Reshef, P. Erwin, and E. Sieradzki for their comments and advice. We thank S. Meiri and G. Vered for technical assistance and N. Paz for editorial assistance.

Author Contributions

H.D., N.S. and S.L.L. designed this study. H.D., L.N., and J.S.E. collected samples. J.S.E. assisted in sequence processing. H.D. conducted the analyses and led the writing of the manuscript. All authors contributed critically to all drafts and gave final approval for publication.

Funding Information

Funding for this project was provided by the US-Israel Binational Science Foundation (BSF), Jerusalem, Israel (number 2014025), to S.L.L. and N.S.

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Ethical Approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

248_2018_1276_MOESM1_ESM.docx (327 kb)
ESM 1 (DOCX 326 kb)

References

  1. 1.
    Rowan R (1998) Diversity and ecology of zooxanthellae on coral reefs. J. Phycol. 34:407–417.  https://doi.org/10.1046/j.1529-8817.1998.340407.x Google Scholar
  2. 2.
    Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential. Microbiol. Mol. Biol. Rev. 71:295–347.  https://doi.org/10.1128/MMBR.00040-06 Google Scholar
  3. 3.
    Wilkinson CR (1983) Net primary productivity in coral reef sponges. Science 219:410–412.  https://doi.org/10.1126/science.219.4583.410 Google Scholar
  4. 4.
    Falkowski PG, Dubinsky Z, Muscatine L, Porter JW (1984) Light and the bioenergetics of a symbiotic coral. Bioscience 34:705–709.  https://doi.org/10.2307/1309663 Google Scholar
  5. 5.
    Hoffmann F, Radax R, Woebken D, Holtappels M, Lavik G, Rapp HT, Schläppy ML, Schleper C, Kuypers MMM (2009) Complex nitrogen cycling in the sponge Geodia barretti. Environ. Microbiol. 11:2228–2243.  https://doi.org/10.1111/j.1462-2920.2009.01944.x Google Scholar
  6. 6.
    Martínez-García M, Stief P, Díaz-Valdés M, Wanner G, Ramos-Esplá A, Dubilier N, Antón J (2008) Ammonia-oxidizing Crenarchaeota and nitrification inside the tissue of a colonial ascidian. Environ. Microbiol. 10:2991–3001.  https://doi.org/10.1111/j.1462-2920.2008.01761.x Google Scholar
  7. 7.
    Lesser MP (2004) Discovery of symbiotic nitrogen-fixing cyanobacteria in corals. Science 305:997–1000.  https://doi.org/10.1126/science.1099128 Google Scholar
  8. 8.
    Hoffmann F, Larsen O, Thiel V, Rapp HT, Pape T, Michaelis W, Reitner J (2005) An anaerobic world in sponges. Geomicrobiol J. 22:1–10.  https://doi.org/10.1080/01490450590922505 Google Scholar
  9. 9.
    Klussmann-Kolb A, Brodie GD (1999) Internal storage and production of symbiotic bacteria in the reproductive system of a tropical marine gastropod. Mar. Biol. 133:443–447.  https://doi.org/10.1007/s002270050483 Google Scholar
  10. 10.
    Fitt WK, Coon SL, Walch M, Weiner RM, Colwell RR, Bonar DB (1990) Settlement behavior and metamorphosis of oyster larvae (Crassostrea gigas) in response to bacterial supernatants. Mar. Biol. 106:389–394.  https://doi.org/10.1007/BF01344317 Google Scholar
  11. 11.
    Thompson JR, Rivera HE, Closek CJ, Medina M (2015) Microbes in the coral holobiont: partners through evolution, development, and ecological interactions. Front Cell Infect Microbiol 4:176.  https://doi.org/10.3389/fcimb.2014.00176 Google Scholar
  12. 12.
    Wilkinson CR (1978) Microbial associations in sponges. II. Numerical analysis of sponge and water bacterial populations. Mar Biol 49:169–176.  https://doi.org/10.1007/BF00387116
  13. 13.
    Newton IL, Girguis PR, Cavanaugh CM (2008) Comparative genomics of vesicomyid clam (Bivalvia: Mollusca) chemosynthetic symbionts. BMC Genomics 9:585.  https://doi.org/10.1186/1471-2164-9-585 Google Scholar
  14. 14.
    Waterbury JB, Calloway CB, Turner RD (1983) A cellulolytic nitrogen-fixing bacterium cultured from the gland of deshayes in shipworms (Bivalvia: Teredinidae). Science 221:1401–1403.  https://doi.org/10.1126/science.221.4618.1401 Google Scholar
  15. 15.
    Prieur D, Mével G, Nicolas JL et al (1990) Interactions between bivalve molluscs and bacteria in the marine environment. Oceanogr. Mar. Biol. Annu. Rev. 28:277–352Google Scholar
  16. 16.
    Armstrong E, Yan L, Boyd KG, Wright PC, Burgess JG (2001) The symbiotic role of marine microbes on living surfaces. Hydrobiologia 461:37–40.  https://doi.org/10.1023/A:1012756913566 Google Scholar
  17. 17.
    Pawlik JR (2011) The chemical ecology of sponges on Caribbean reefs: natural products shape natural systems. Bioscience 61:888–898.  https://doi.org/10.1525/bio.2011.61.11.8 Google Scholar
  18. 18.
    Schmidt EW, Obraztsova AY, Davidson SK, Faulkner DJ, Haygood MG (2000) Identification of the antifungal peptide-containing symbiont of the marine sponge Theonella swinhoei as a novel δ-proteobacterium, “Candidatus Entotheonella palauensis.”. Mar. Biol. 136:969–977.  https://doi.org/10.1007/s002270000273 Google Scholar
  19. 19.
    Unson MD, Holland ND, Faulkner DJ (1994) A brominated secondary metabolite synthesized by the cyanobacterial symbiont of a marine sponge and accumulation of the crystalline metabolite in the sponge tissue. Mar. Biol. 119:1–11.  https://doi.org/10.1007/BF00350100 Google Scholar
  20. 20.
    Paul VJ, Arthur KE, Ritson-Williams R, Ross C, Sharp K (2007) Chemical defenses: from compounds to communities. Biol. Bull. 213:226–251.  https://doi.org/10.2307/25066642 Google Scholar
  21. 21.
    Castro D, Pujalte MJ, Lopez-Cortes L, Garay E, Borrego JJ (2002) Vibrios isolated from the cultured manila clam (Ruditapes philippinarum): numerical taxonomy and antibacterial activities. J. Appl. Microbiol. 93:438–447.  https://doi.org/10.1046/j.1365-2672.2002.01709.x Google Scholar
  22. 22.
    Reshef L, Koren O, Loya Y, Zilber-Rosenberg I, Rosenberg E (2006) The coral probiotic hypothesis. Environ. Microbiol. 8:2068–2073.  https://doi.org/10.1111/j.1462-2920.2006.01148.x Google Scholar
  23. 23.
    Shnit-Orland M, Kushmaro A (2009) Coral mucus-associated bacteria: a possible first line of defense. FEMS Microbiol. Ecol. 67:371–380.  https://doi.org/10.1111/j.1574-6941.2008.00644.x Google Scholar
  24. 24.
    Wilcove DS, Rothstein D, Dubow J, Phillips A, Losos E (1998) Quantifying threats to imperiled species in the United States. Bioscience 48:607–615.  https://doi.org/10.2307/1313420 Google Scholar
  25. 25.
    Simonsen AK, Dinnage R, Barrett LG, Prober SM, Thrall PH (2017) Symbiosis limits establishment of legumes outside their native range at a global scale. Nat. Commun. 8:14790.  https://doi.org/10.1038/ncomms14790 Google Scholar
  26. 26.
    Zurel D, Benayahu Y, Or A, Kovacs A, Gophna U (2011) Composition and dynamics of the gill microbiota of an invasive Indo-Pacific oyster in the eastern Mediterranean Sea. Environ. Microbiol. 13:1467–1476.  https://doi.org/10.1111/j.1462-2920.2011.02448.x Google Scholar
  27. 27.
    Galbreath JGMS, Smith JE, Terry RS et al (2004) Invasion success of Fibrillanosema crangonycis, n.sp., n.g.: a novel vertically transmitted microsporidian parasite from the invasive amphipod host Crangonyx pseudogracilis. Int. J. Parasitol. 34:235–244.  https://doi.org/10.1016/j.ijpara.2003.10.009 Google Scholar
  28. 28.
    Coats VC, Rumpho ME (2014) The rhizosphere microbiota of plant invaders: an overview of recent advances in the microbiomics of invasive plants. Front. Microbiol. 5:368.  https://doi.org/10.3389/fmicb.2014.00368 Google Scholar
  29. 29.
    Evans JS, Erwin PM, Shenkar N, López-Legentil S (2017) Introduced ascidians harbor highly diverse and host-specific symbiotic microbial assemblages. Sci. Rep. 7:11033.  https://doi.org/10.1038/s41598-017-11441-4 Google Scholar
  30. 30.
    Erwin PM, Pineda MC, Webster N, et al (2013) Small core communities and high variability in bacteria associated with the introduced ascidian Styela plicata. Symbiosis 59:35–46.  https://doi.org/10.1007/s13199-012-0204-0
  31. 31.
    Vrijenhoek RC (2010) Genetics and evolution of deep-sea chemosynthetic bacteria and their invertebrate hosts. The vent and seep biota, topics in geobiology. Springer, Dordrecht, pp 15–49Google Scholar
  32. 32.
    Roterman YR, Benayahu Y, Reshef L, Gophna U (2015) The gill microbiota of invasive and indigenous Spondylus oysters from the Mediterranean Sea and northern Red Sea. Environ. Microbiol. Rep. 7:860–867.  https://doi.org/10.1111/1758-2229.12315 Google Scholar
  33. 33.
    Sakai AK, Allendorf FW, Holt JS, Lodge DM, Molofsky J, With KA, Baughman S, Cabin RJ, Cohen JE, Ellstrand NC, McCauley DE, O'Neil P, Parker IM, Thompson JN, Weller SG (2001) The population biology of invasive species. Annu. Rev. Ecol. Syst. 32:305–332.  https://doi.org/10.1146/annurev.ecolsys.32.081501.114037 Google Scholar
  34. 34.
    Lambert G (2001) A global overview of ascidian introductions and their possible impact on the endemic fauna. The biology of ascidians. Springer Japan, Tokyo, pp 249–257Google Scholar
  35. 35.
    Monniot C, Monniot F, Laboute P (1991) Coral reef ascidians of New Caledonia. Orstom, ParisGoogle Scholar
  36. 36.
    Shenkar N, Swalla BJ (2011) Global diversity of Ascidiacea. PLoS One 6:e20657.  https://doi.org/10.1371/journal.pone.0020657 Google Scholar
  37. 37.
    Lambert CC, Lambert G (1998) Non-indigenous ascidians in southern California harbors and marinas. Mar. Biol. 130:675–688.  https://doi.org/10.1007/s002270050289 Google Scholar
  38. 38.
    Millar RH (1971) The biology of ascidians. Adv. Mar. Biol. 9:1–100.  https://doi.org/10.1016/S0065-2881(08)60341-7 Google Scholar
  39. 39.
    Svane I, Young C (1989) The ecology and behaviour of ascidian larvae. Oceanogr Mar Biol Annu Rev 27:45–90.  https://doi.org/10.1080/00364827.1980.10431474 Google Scholar
  40. 40.
    Lambert G (2007) Invasive sea squirts: a growing global problem. J Exp Mar Bio Ecol 342:3–4Google Scholar
  41. 41.
    Rius M, Heasman KG, McQuaid CD (2011) Long-term coexistence of non-indigenous species in aquaculture facilities. Mar. Pollut. Bull. 62:2395–2403.  https://doi.org/10.1016/j.marpolbul.2011.08.030 Google Scholar
  42. 42.
    Lambert G (2002) Nonindigenous ascidians in tropical waters. Pac Sci 56:291–298.  https://doi.org/10.1353/psc.2002.0026 Google Scholar
  43. 43.
    Naranjo S, Carballo J, García-Gómez J (1996) Effects of environmental stress on ascidian populations in Algeciras Bay (southern Spain). Possible marine bioindicators? Mar. Ecol. Prog. Ser. 144:119–131.  https://doi.org/10.3354/meps144119 Google Scholar
  44. 44.
    Pineda MC, Turon X, López-Legentil S (2012) Stress levels over time in the introduced ascidian Styela plicata: the effects of temperature and salinity variations on hsp70 gene expression. Cell Stress Chaperones 17:435–444.  https://doi.org/10.1007/s12192-012-0321-y Google Scholar
  45. 45.
    Rocha RM, Castellano GC, Freire CA (2017) Physiological tolerance as a tool to support invasion risk assessment of tropical ascidians. Mar. Ecol. Prog. Ser. 577:105–119.  https://doi.org/10.3354/meps12225 Google Scholar
  46. 46.
    Nagar LR, Shenkar N (2016) Temperature and salinity sensitivity of the invasive ascidian Microcosmus exasperatus Heller, 1878. Aquat. Invasions 11:33–43.  https://doi.org/10.3391/ai.2016.11.1.04 Google Scholar
  47. 47.
    Lambert CC, Lambert G (2003) Persistence and differential distribution of nonindigenous ascidians in harbors of the southern California Bight. Mar. Ecol. Prog. Ser. 259:145–161Google Scholar
  48. 48.
    Schmidt EW, Nelson JT, Rasko DA, Sudek S, Eisen JA, Haygood MG, Ravel J (2005) Patellamide A and C biosynthesis by a microcin-like pathway in Prochloron didemni, the cyanobacterial symbiont of Lissoclinum patella. Proc. Natl. Acad. Sci. U. S. A. 102:7315–7320.  https://doi.org/10.1073/pnas.0501424102 Google Scholar
  49. 49.
    Schmidt EW (2015) The secret to a successful relationship: lasting chemistry between ascidians and their symbiotic bacteria. Invertebr. Biol. 134:88–102.  https://doi.org/10.1111/ivb.12071 Google Scholar
  50. 50.
    Erwin PM, Pineda MC, Webster N, Turon X, López-Legentil S (2014) Down under the tunic: bacterial biodiversity hotspots and widespread ammonia-oxidizing archaea in coral reef ascidians. ISME J 8:575–588.  https://doi.org/10.1038/ismej.2013.188 Google Scholar
  51. 51.
    Tianero MDB, Kwan JC, Wyche TP, Presson AP, Koch M, Barrows LR, Bugni TS, Schmidt EW (2015) Species specificity of symbiosis and secondary metabolism in ascidians. ISME J 9:615–628.  https://doi.org/10.1038/ismej.2014.152 Google Scholar
  52. 52.
    Hirose E, Maruyama T (2004) What are the benefits in the ascidian-Prochloron symbiosis? Endocytobiosis Cell Res 15:51–62Google Scholar
  53. 53.
    Hirose E (2015) Ascidian photosymbiosis: diversity of cyanobacterial transmission during embryogenesis. Genesis 53:121–131.  https://doi.org/10.1002/dvg.22778 Google Scholar
  54. 54.
    López-Legentil S, Turon X, Espluga R, Erwin PM (2015) Temporal stability of bacterial symbionts in a temperate ascidian. Front. Microbiol. 6:1022.  https://doi.org/10.3389/fmicb.2015.01022 Google Scholar
  55. 55.
    Pérès J (1958) Ascidies recoltées sur les côtes Méditerranéennes d’Israel. Bull Res Counc Isr B 7:143–150Google Scholar
  56. 56.
    Por FD (1978) Lessepsian migration. The influx of Red Sea biota into the Mediterranean by way of the Suez Canal. Springer-Verlag, BerlinGoogle Scholar
  57. 57.
    Shenkar N, Loya Y (2009) Non-indigenous ascidians (Chordata: Tunicata) along the Mediterranean coast of Israel. Mar Biodivers Rec 2:e166.  https://doi.org/10.1017/S1755267209990753 Google Scholar
  58. 58.
    Pineda MC, López-Legentil S, Turon X (2011) The whereabouts of an ancient wanderer: global phylogeography of the solitary ascidian Styela plicata. PLoS One 6:e25495.  https://doi.org/10.1371/journal.pone.0025495 Google Scholar
  59. 59.
    Shenkar N, Loya Y (2008) The solitary ascidian Herdmania momus: native (Red Sea) versus non-indigenous (Mediterranean) populations. Biol. Invasions 10:1431–1439.  https://doi.org/10.1007/s10530-008-9217-2 Google Scholar
  60. 60.
    Gewing M-T, Rothman SBS, Nagar LR et al (2014) Early stages of establishment of the non-indigenous ascidian Herdmania momus (Savigny, 1816) in shallow and deep water environments on natural substrates in the Mediterranean Sea. BioInv Rec 3:77–81.  https://doi.org/10.3391/bir.2014.3.2.04 Google Scholar
  61. 61.
    Barros R, da Rocha RM, Pie M (2009) Human-mediated global dispersion of Styela plicata (Tunicata, Ascidiacea). Aquat. Invasions 4:45–57.  https://doi.org/10.3391/ai.2009.4.1.4 Google Scholar
  62. 62.
    Pineda MC, Turon X, Pérez-portela R, López-legentil S (2016) Stable populations in unstable habitats: temporal genetic structure of the introduced ascidian Styela plicata in North Carolina. Mar. Biol. 163:1–14.  https://doi.org/10.1007/s00227-016-2829-7 Google Scholar
  63. 63.
    Novak L, López-Legentil S, Sieradzki E, Shenkar N (2017) Rapid establishment of the non-indigenous ascidian Styela plicata and its associated bacteria in marinas and fishing harbors along the Mediterranean coast of Israel. Mediterr. Mar. Sci. 18:324–331.  https://doi.org/10.12681/mms.2135 Google Scholar
  64. 64.
    Dror H (2017) Hidden allies : the potential contribution of bacterial communities to the successful establishment of the invasive ascidians Styela plicata and Herdmania momus in the Eastern Mediterranean. (MSc thesis). Tel-Aviv University, Tel-Aviv, IsraelGoogle Scholar
  65. 65.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lozupone CA, Turnbaugh PJ, Fierer N, Knight R (2011) Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. 108:4516–4522.  https://doi.org/10.1073/pnas.1000080107 Google Scholar
  66. 66.
    Schloss PD, Westcott SL (2011) Assessing and improving methods used in operational taxonomic unit-based approaches for 16S rRNA gene sequence analysis. Appl. Environ. Microbiol. 77:3219–3226.  https://doi.org/10.1128/AEM.02810-10 Google Scholar
  67. 67.
    Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the miseq illumina sequencing platform. Appl. Environ. Microbiol. 79:5112–5120.  https://doi.org/10.1128/AEM.01043-13 Google Scholar
  68. 68.
    Weigel BL, Erwin PM (2015) Intraspecific variation in microbial symbiont communities of the sun sponge, Hymeniacidon heliophila, from intertidal and subtidal habitats. Appl Environ Microbiol 82:650–658.  https://doi.org/10.1128/AEM.02980-15 Google Scholar
  69. 69.
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200.  https://doi.org/10.1093/bioinformatics/btr381 Google Scholar
  70. 70.
    Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73:5261–5267.  https://doi.org/10.1128/AEM.00062-07 Google Scholar
  71. 71.
    McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217.  https://doi.org/10.1371/journal.pone.0061217 Google Scholar
  72. 72.
    Oksanen J, Blanchet FG, Kindt R, et al (2016) Package “vegan”: community ecology packageGoogle Scholar
  73. 73.
    Kim KI, van de Wiel MA (2008) Effects of dependence in high-dimensional multiple testing problems. BMC Bioinf 9:114.  https://doi.org/10.1186/1471-2105-9-114 Google Scholar
  74. 74.
    Fuhrman JA (2009) Microbial community structure and its functional implications. Nature 459:193–199.  https://doi.org/10.1038/nature08058 Google Scholar
  75. 75.
    Cahill PL, Fidler AE, Hopkins GA, Wood SA (2016) Geographically conserved microbiomes of four temperate water tunicates. Environ. Microbiol. Rep. 8:470–478.  https://doi.org/10.1111/1758-2229.12391 Google Scholar
  76. 76.
    Chen L, Fu C, Wang G (2017) Microbial diversity associated with ascidians: a review of research methods and application. Symbiosis 71:19–26.  https://doi.org/10.1007/s13199-016-0398-7 Google Scholar
  77. 77.
    López-Legentil S, Turon X, Erwin PM (2016) Feeding cessation alters host morphology and bacterial communities in the ascidian Pseudodistoma crucigaster. Front. Zool. 13(2):2.  https://doi.org/10.1186/s12983-016-0134-4 Google Scholar
  78. 78.
    Martínez-García M, Díaz-Valdés M, Wanner G, Ramos-Esplá A, Antón J (2007) Microbial community associated with the colonial ascidian Cystodytes dellechiajei. Environ. Microbiol. 9:521–534.  https://doi.org/10.1111/j.1462-2920.2006.01170.x Google Scholar
  79. 79.
    Tait E, Carman M, Sievert SM (2007) Phylogenetic diversity of bacteria associated with ascidians in eel pond (woods hole, Massachusetts, USA). J Exp Mar Bio Ecol 342:138–146.  https://doi.org/10.1016/j.jembe.2006.10.024 Google Scholar
  80. 80.
    Hester ER, Barott KL, Nulton J, Vermeij MJA, Rohwer FL (2016) Stable and sporadic symbiotic communities of coral and algal holobionts. ISME J 10:1157–1169.  https://doi.org/10.1038/ismej.2015.190 Google Scholar
  81. 81.
    Behrendt L, Larkum AWD, Trampe E, Norman A, Sørensen SJ, Kühl M (2012) Microbial diversity of biofilm communities in microniches associated with the didemnid ascidian Lissoclinum patella. ISME J 6:1222–1237.  https://doi.org/10.1038/ismej.2011.181 Google Scholar
  82. 82.
    Kühl M, Behrendt L, Trampe E, Qvortrup K, Schreiber U, Borisov SM, Klimant I, Larkum AWD (2012) Microenvironmental ecology of the chlorophyll b-containing symbiotic cyanobacterium Prochloron in the didemnid ascidian Lissoclinum patella. Front. Microbiol. 3:402.  https://doi.org/10.3389/fmicb.2012.00402 Google Scholar
  83. 83.
    Pita L, López-Legentil S, Erwin PM (2013) Biogeography and host fidelity of bacterial communities in Ircinia spp. from the Bahamas. Microb. Ecol. 66:437–447.  https://doi.org/10.1007/s00248-013-0215-2 Google Scholar
  84. 84.
    Pita L, Turon X, López-Legentil S, Erwin PM (2013) Host rules: spatial stability of bacterial communities associated with marine sponges (Ircinia spp.) in the Western Mediterranean Sea. FEMS Microbiol. Ecol. 86:268–276.  https://doi.org/10.1111/1574-6941.12159 Google Scholar
  85. 85.
    Sunagawa S, Woodley CM, Medina M (2010) Threatened corals provide underexplored microbial habitats. PLoS One 5:1–7.  https://doi.org/10.1371/journal.pone.0009554 Google Scholar
  86. 86.
    Webster NS, Taylor MW (2012) Marine sponges and their microbial symbionts: love and other relationships. Environ. Microbiol. 14:335–346.  https://doi.org/10.1111/j.1462-2920.2011.02460.x Google Scholar
  87. 87.
    Donia MS, Fricke WF, Ravel J, Schmidt EW (2011) Variation in tropical reef symbiont metagenomes defined by secondary metabolism. PLoS One 6:e17897.  https://doi.org/10.1371/journal.pone.0017897 Google Scholar
  88. 88.
    Nyholm SV, McFall-Ngai M (2004) The winnowing: establishing the squid–vibrio symbiosis. Nat Rev Microbiol 2:632–642.  https://doi.org/10.1038/nrmicro957 Google Scholar
  89. 89.
    Sharp KH, Ritchie KB, Schupp PJ, Ritson-Williams R, Paul VJ (2010) Bacterial acquisition in juveniles of several broadcast spawning coral species. PLoS One 5:e10898.  https://doi.org/10.1371/journal.pone.0010898 Google Scholar
  90. 90.
    Aires T, Serrão EA, Engelen AH (2016) Host and environmental specificity in bacterial communities associated to two highly invasive marine species (genus Asparagopsis). Front. Microbiol. 7:559.  https://doi.org/10.3389/fmicb.2016.00559 Google Scholar
  91. 91.
    Cleary DFR, Becking LE, de Voogd NJ, Pires ACC, Polónia ARM, Egas C, Gomes NCM (2013) Habitat- and host-related variation in sponge bacterial symbiont communities in Indonesian waters. FEMS Microbiol. Ecol. 85:465–482.  https://doi.org/10.1111/1574-6941.12135 Google Scholar
  92. 92.
    Cleary DFR, Becking LE, Polónia ARM, Freitas RM, Gomes NCM (2015) Composition and predicted functional ecology of mussel-associated bacteria in Indonesian marine lakes. Antonie Van Leeuwenhoek 107:821–834.  https://doi.org/10.1007/s10482-014-0375-1 Google Scholar
  93. 93.
    Huo YY, Cheng H, Han XF, Jiang XW, Sun C, Zhang XQ, Zhu XF, Liu YF, Li PF, Ni PX, Wu M (2012) Complete genome sequence of Pelagibacterium halotolerans B2 T. J. Bacteriol. 194:197–198.  https://doi.org/10.1128/JB.06343-11 Google Scholar
  94. 94.
    Neave MJ, Streten-Joyce C, Glasby CJ, McGuinness KA, Parry DL, Gibb KS (2012) The bacterial community associated with the marine polychaete Ophelina sp.1 (Annelida: Opheliidae) is altered by copper and zinc contamination in sediments. Microb. Ecol. 63:639–650.  https://doi.org/10.1007/s00248-011-9966-9 Google Scholar
  95. 95.
    Turner SJ, Thrush SF, Cummings VJ, Hewitt JE, Wilkinson MR, Williamson RB, Lee DJ (1997) Changes in epifaunal assemblages in response to marina operations and boating activities. Mar. Environ. Res. 43:181–199.  https://doi.org/10.1016/0141-1136(96)00086-4 Google Scholar
  96. 96.
    Schmitt S, Tsai P, Bell J, Fromont J, Ilan M, Lindquist N, Perez T, Rodrigo A, Schupp PJ, Vacelet J, Webster N, Hentschel U, Taylor MW (2012) Assessing the complex sponge microbiota: core, variable and species-specific bacterial communities in marine sponges. ISME J 6:564–576.  https://doi.org/10.1038/ismej.2011.116 Google Scholar
  97. 97.
    Pujalte MJ, Lucena T, Ruvira MA, Arahal DR, Macián MC (2014) The family Rhodobacteraceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt ETF (eds) The prokaryotes: Alphaproteobacteria and Betaproteobacteria. Springer, Berlin, pp 439–512Google Scholar
  98. 98.
    Könneke M, Bernhard AE, de la Torre JR, Walker CB, Waterbury JB, Stahl DA (2005) Isolation of an autotrophic ammonia-oxidizing marine archaeon. Nature 437:543–546.  https://doi.org/10.1038/nature03911 Google Scholar
  99. 99.
    Blasiak LC, Zinder SH, Buckley DH, Hill RT (2014) Bacterial diversity associated with the tunic of the model chordate Ciona intestinalis. ISME J 8:309–320.  https://doi.org/10.1038/ismej.2013.156 Google Scholar
  100. 100.
    Proctor LM (1997) Nitrogen-fixing, photosynthetic, anaerobic bacteria associated with pelagic copepods. Aquat. Microb. Ecol. 12:105–113.  https://doi.org/10.3354/ame012105 Google Scholar
  101. 101.
    Kelly LW, Williams GJ, Barott KL, Carlson CA, Dinsdale EA, Edwards RA, Haas AF, Haynes M, Lim YW, McDole T, Nelson CE, Sala E, Sandin SA, Smith JE, Vermeij MJA, Youle M, Rohwer F (2014) Local genomic adaptation of coral reef-associated microbiomes to gradients of natural variability and anthropogenic stressors. Proc. Natl. Acad. Sci. 111:10227–10232.  https://doi.org/10.1073/pnas.1403319111 Google Scholar
  102. 102.
    Rowan R, Knowlton N (1995) Intraspecific diversity and ecological zonation in coral-algal symbiosis. Proc. Natl. Acad. Sci. 92:2850–2853.  https://doi.org/10.1073/pnas.92.7.2850 Google Scholar
  103. 103.
    Koren O, Rosenberg E (2006) Bacteria associated with mucus and tissues of the coral Oculina patagonica in summer and winter. Appl. Environ. Microbiol. 72:5254–5259.  https://doi.org/10.1128/AEM.00554-06 Google Scholar
  104. 104.
    Sussman M, Loya Y, Fine M, Rosenberg E (2003) The marine fireworm Hermodice carunculata is a winter reservoir and spring-summer vector for the coral-bleaching pathogen Vibrio shiloi. Environ. Microbiol. 5:250–255.  https://doi.org/10.1046/j.1462-2920.2003.00424.x Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Zoology, George S. Wise Faculty of Life SciencesTel-Aviv UniversityTel-AvivIsrael
  2. 2.Department of Biology and Marine Biology, Center for Marine ScienceUniversity of North Carolina WilmingtonWilmingtonUSA
  3. 3.The Steinhardt Museum of Natural History, Israel National Center for Biodiversity StudiesTel-Aviv UniversityTel AvivIsrael

Personalised recommendations