Advertisement

Microbial Ecology

, Volume 77, Issue 3, pp 726–735 | Cite as

High-Throughput Quantitative Measurement of Bacterial Attachment Kinetics on Seconds Time Scale

  • N. ShteindelEmail author
  • D. Yankelev
  • Y. Gerchman
Methods

Abstract

Surface attachment is an important factor in the life of many microbial species. Late stages of attachment (i.e., mature biofilms) are rigorously studied, but data on the very early stages is scarce. The lack of robust research methods may go a long way in explaining this situation. We have developed a method that allows the rapid kinetic measurement of bacterial attachment, with seconds to minute’s temporal resolution, in a high-throughput setting. The method requires the use of a commercially available microtiter plate reader capable of fluorescence measurement from the bottom, standard microtiter plates, fluorescently tagged bacteria, and a common dye. The high temporal resolution reveals nuanced, fast, and dynamic behaviors in the very early phases of attachment. To demonstrate potential applications, we tested the effect of various conditions on attachment kinetics—specie, substratum, salt concentration, and culture density. Results are in good agreement with crystal violet staining (correlation R2 > 0.95 in all cases) and reproducing published data but show much greater detail and fidelity.

Keywords

Bacterial attachment Kinetic measurement High throughput Method 

Notes

Acknowledgments

We would like to thank Professor Ehud Banin of the Bar-ilan University for the Pseudomonas aeruginosa culture and plasmid, Professor Iris Yedidya of the Hebrew University for the Pectobacterium carotovorum culture and plasmid, and Professor Sascha Krenek of the Dresden Institute of Hydrobiology, Germany, for the YFP tagged Pseudomonas putida culture. We would also like to thank Professor Malka Halpern of the Haifa University for her helpful suggestions and correction of the manuscript.

Supplementary material

248_2018_1254_MOESM1_ESM.docx (343 kb)
ESM 1 (DOCX 343 kb)
248_2018_1254_MOESM2_ESM.pdf (42 kb)
ESM 2 (PDF 41 kb)
248_2018_1254_MOESM3_ESM.pdf (52 kb)
ESM 3 (PDF 51 kb)
248_2018_1254_MOESM4_ESM.pdf (114 kb)
ESM 4 (PDF 114 kb)

References

  1. 1.
    Andersson S, Kuttuva Rajarao G, Land CJ, Dalhammar G (2008) Biofilm formation and interactions of bacterial strains found in wastewater treatment systems. FEMS Microbiol. Lett 283:83–90CrossRefGoogle Scholar
  2. 2.
    Balasubramanian S, Sorokulova IB, Vodyanoy VJ, Simonian AL (2007) Lytic phage as a specific and selective probe for detection of Staphylococcus aureus—a surface plasmon resonance spectroscopic study. Biosens. Bioelectron 22:948–955CrossRefGoogle Scholar
  3. 3.
    Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A (1999) The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J. Clin. Microbiol 37:1771Google Scholar
  4. 4.
    Chavant P, Gaillard-Martinie B, Talon R, Hébraud M, Bernardi T (2007) A new device for rapid evaluation of biofilm formation potential by bacteria. J. Microbiol. Methods 68:605–612CrossRefGoogle Scholar
  5. 5.
    Culler HF, Mota CM, Abe CM, Elias WP, Sircili MP, Franzolin MR (2014) Atypical enteropathogenic Escherichia coli strains form biofilm on abiotic surfaces regardless of their adherence pattern on cultured epithelial cells. Biomed. Res. Int 2014:845147 1, 10CrossRefGoogle Scholar
  6. 6.
    Fletcher M, Savage DC (2013) Bacterial adhesion: mechanisms and physiological significance. Springer Science & Business MediaGoogle Scholar
  7. 7.
    Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog. Nat. Sci 18:1049–1056CrossRefGoogle Scholar
  8. 8.
    Gottenbos B, Van der Mei, Henny C, Busscher HJ (1999) Models for studying initial adhesion and surface growth in biofilm formation on surfaces. Meth Enzymol:523Google Scholar
  9. 9.
    Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol 2:95–108CrossRefGoogle Scholar
  10. 10.
    Hermansson M (1999) The DLVO theory in microbial adhesion. Colloids Surf. B: Biointerfaces 14:105–119CrossRefGoogle Scholar
  11. 11.
    Hook F, Rodahl M, Keller C, Glasmastar K, Fredriksson C, Dahiqvist P, Kasemo B (1999) The dissipative QCM-D technique: interfacial phenomena and sensor applications for proteins, biomembranes, living cells and polymers. 2:966Google Scholar
  12. 12.
    Huang Q, Wu H, Cai P, Fein JB, Chen W (2015) Atomic force microscopy measurements of bacterial adhesion and biofilm formation onto clay-sized particles. Sci. Rep 5:16857CrossRefGoogle Scholar
  13. 13.
    Hunger K, Mischke P, Rieper W, Zhang S (1988) Azo dyes, 3. Direct (substantive) dyes. In: Chadwick S, Ullmann’s encyclopedia of industrial chemistry, vol. 16, MCB UP Ltd, 31–34Google Scholar
  14. 14.
    Joshi JR, Burdman S, Lipsky A, Yedidia I (2015) Effects of plant antimicrobial phenolic compounds on virulence of the genus Pectobacterium. Res. Microbiol 166:535–545CrossRefGoogle Scholar
  15. 15.
    Klančnik A, Toplak N, Kovač M, Marquis H, Jeršek B (2015) Quantification of listeria monocytogenes cells with digital PCR and their biofilm cells with real-time PCR. J. Microbiol. Methods 118:37–41CrossRefGoogle Scholar
  16. 16.
    Klausen M, Heydorn A, Ragas P, Lambertsen L, Aaes-Jørgensen A, Molin S, Tolker-Nielsen T (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol. Microbiol 48:1511–1524CrossRefGoogle Scholar
  17. 17.
    Klausen M, Gjermansen M, Kreft J, Tolker-Nielsen T (2006) Dynamics of development and dispersal in sessile microbial communities: examples from Pseudomonas aeruginosa and Pseudomonas putida model biofilms. FEMS Microbiol. Lett. 261:1–11CrossRefGoogle Scholar
  18. 18.
    Lim CP, Mai PNQ, Sade DR, Lam YC, Cohen Y (2016) Biofilm development of an opportunistic model bacterium analysed at high spatiotemporal resolution in the framework of a precise flow cell. NPJ Biofilms and Microbiomes 2:16023CrossRefGoogle Scholar
  19. 19.
    Long G, Zhu P, Shen Y, Tong M (2009) Influence of extracellular polymeric substances (EPS) on deposition kinetics of bacteria. Environ Sci Technol 43:2308–2314CrossRefGoogle Scholar
  20. 20.
    Marcus IM, Herzberg M, Walker SL, Freger V (2012) Pseudomonas aeruginosa attachment on QCM-D sensors: the role of cell and surface hydrophobicities. Langmuir 28:6396–6402CrossRefGoogle Scholar
  21. 21.
    Miller WG, Leveau JH, Lindow SE (2000) Improved gfp and inaZ broad-host-range promoter-probe vectors. Mol. Plant-Microbe Interact 13:1243–1250CrossRefGoogle Scholar
  22. 22.
    Mittelman M, Jones A (2016) A pure life: the microbial ecology of high purity industrial waters. Microb. Ecol:1Google Scholar
  23. 23.
    O’Toole GA (2011) Microtiter dish biofilm formation assay. J Vis Exp (47).  https://doi.org/10.3791/2437
  24. 24.
    Pantanella F, Valenti P, Natalizi T, Passeri D, Berlutti F (2013) Analytical techniques to study microbial biofilm on abiotic surfaces: pros and cons of the main techniques currently in use. Ann. Ig 25:31Google Scholar
  25. 25.
    Peeters E, Nelis HJ, Coenye T (2008) Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J. Microbiol. Methods 72:157–165CrossRefGoogle Scholar
  26. 26.
    Raya A, Sodagari M, Pinzon NM, He X, Newby BZ, Ju L (2010) Effects of rhamnolipids and shear on initial attachment of Pseudomonas aeruginosa PAO1 in glassflow chambers. Environ. Sci. Pollut. Res 17:1529–1538CrossRefGoogle Scholar
  27. 27.
    Riedel CU, Foata F, Goldstein DR, Blum S, Eikmanns BJ (2006) Interaction of bifidobacteria with Caco-2 cells—adhesion and impact on expression profiles. Int. J. Food Microbiol 110:62–68CrossRefGoogle Scholar
  28. 28.
    Schnurer J, Rosswall T (1982) Fluorescein diacetate hydrolysis as a measure of total microbial activity in soil and litter. Appl. Environ. Microbiol 43:1256Google Scholar
  29. 29.
    Seiler C, van Velzen E, Neu TR, Gaedke U, Berendonk TU, Weitere M (2017) Grazing resistance of bacterial biofilms: a matter of predators’ feeding trait. FEMS Microbiol. Ecol 93Google Scholar
  30. 30.
    Seoane J, Yankelevich T, Dechesne A, Merkey B, Sternberg C, Smets BF (2010) An individual-based approach to explain plasmid invasion in bacterial populations. FEMS Microbiol. Ecol 75:17CrossRefGoogle Scholar
  31. 31.
    Sulaeman S, Le Bihan G, Rossero A, Federighi M, De E, Tresse O (2010) Comparison between the biofilm initiation of Campylobacter jejuni and Campylobacter coli strains to an inert surface using BioFilm Ring Test®. J. Appl. Microbiol 108:1303–1312CrossRefGoogle Scholar
  32. 32.
    Zagorodko O, Bouckaert J, Dumych T, Bilyy R, Larroulet I, Serrano AY, Dorta DA, Gouin SG, Dima S, Oancea F (2015) Surface plasmon resonance (SPR) for the evaluation of shear-force-dependent bacterial adhesion. Biosensors 5:276–287CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Evolutionary and Environmental BiologyUniversity of HaifaHaifaIsrael
  2. 2.Department of Physics of Complex SystemsWeizmann InstituteRehovotIsrael
  3. 3.Biology and EnvironmentUniversity of Haifa-OranimKiryat TivonIsrael

Personalised recommendations