Advertisement

Microbial Ecology

, Volume 77, Issue 1, pp 230–242 | Cite as

Bacterial and Fungal Midgut Community Dynamics and Transfer Between Mother and Brood in the Asian Longhorned Beetle (Anoplophora glabripennis), an Invasive Xylophage

  • Charles J. Mason
  • Alexander M. Campbell
  • Erin D. Scully
  • Kelli Hoover
Invertebrate Microbiology

Abstract

Microbial symbionts play pivotal roles in the ecology and physiology of insects feeding in woody plants. Both eukaryotic and bacterial members occur in these systems where they facilitate digestive and nutrient provisioning. The larval gut of the Asian longhorned beetle (Anoplophora glabripennis) is associated with a microbial consortium that fulfills these metabolic roles. While members of the community vary in presence and abundance among individuals from different hosts, A. glabripennis is consistently associated with a fungus in the Fusarium solani species complex (FSSC). We used amplicon sequencing, taxon-specific PCR, culturing, and imaging to determine how bacterial and fungal communities differ between life stages and possible modes of symbiont transfer. The bacterial and fungal communities of adult guts were more diverse than those from larvae and eggs. The communities of larvae and eggs were more similar to those from oviposition sites than from adult female guts. FSSC isolates were not detected in the reproductive tissues of adult females, but were consistently detected on egg surfaces after oviposition and in frass. These results demonstrate that frass can serve as a vehicle of transmission of a subset for the beetle gut microbiota. Vertically transmitted symbionts are often beneficial to their host, warranting subsequent functional studies.

Keywords

Bacterial 16S rRNA Fungal ITS1 Asian longhorned beetle Fusarium solani Vertical transmission Symbiosis 

Notes

Acknowledgements

We would like to thank David Long and Francine McCullough for the A. glabripennis colony maintenance and Cristina Rosa for the qPCR machine access. We would also like to thank Jon Cantolina at the PSU Microscopy and Cytometry Facility for the assistance in image collection. Funding was provided by USDA-NIFA Grant 2015-67013-23287 and the Alphawood Foundation. This manuscript was improved by constructive comments from two anonymous referees. The US Department of Agriculture, Agricultural Research Service, is an equal opportunity/affirmative action employer, and all agency services are available without discrimination. Mention of commercial products and organizations in this manuscript is solely to provide specific information. It does not constitute endorsement by USDA-ARS over other products and organizations not mentioned.

Supplementary material

248_2018_1205_MOESM1_ESM.eps (93 kb)
Supplemental Fig 1: qPCR of FSSC in A. glabripennis adults guts, adult frass, oviposition excretions, and larval guts. Eggs were not included due to poor amplification of beetle housekeeper. (EPS 92 kb)
248_2018_1205_Fig6_ESM.png (11 kb)

High resolution image (PNG 10 kb)

248_2018_1205_MOESM2_ESM.eps (55 kb)
Supplemental Fig 2: Comparison of culturable microbial titers present in adult female A. glabripennis frass and phloem. Adjacent to oviposition pit. (EPS 55 kb)
248_2018_1205_Fig7_ESM.png (3 kb)

High resolution image (PNG 3 kb)

248_2018_1205_MOESM3_ESM.pdf (366 kb)
Supplemental Fig 3: Assessment of FSSC primer specificity with cultivatable fungi. (PDF 365 kb)
248_2018_1205_MOESM4_ESM.mp4 (158.7 mb)
ESM 4 (MP4 162518 kb)
248_2018_1205_MOESM5_ESM.mov (15.4 mb)
ESM 5 (MOV 15760 kb)
248_2018_1205_MOESM6_ESM.docx (131 kb)
ESM 6 (DOCX 130 kb)
248_2018_1205_MOESM7_ESM.docx (28 kb)
ESM 7 (DOCX 28 kb)

References

  1. 1.
    Douglas AE (2015) Multiorganismal insects: diversity and function of resident microorganisms. Annu Rev Entomol 60:17–34.  https://doi.org/10.1146/annurev-ento-010814-020822 CrossRefPubMedGoogle Scholar
  2. 2.
    Engel P, Moran NA (2013) The gut microbiota of insects—diversity in structure and function. FEMS Microbiol Rev 37:699–735.  https://doi.org/10.1111/1574-6976.12025 CrossRefPubMedGoogle Scholar
  3. 3.
    Sudakaran S, Kost C, Kaltenpoth M (2017) Symbiont acquisition and replacement as a source of ecological innovation. Trends Microbiol 25:375–390.  https://doi.org/10.1016/j.tim.2017.02.014 CrossRefPubMedGoogle Scholar
  4. 4.
    Bright M, Bulgheresi S (2010) A complex journey: transmission of microbial symbionts. Nat Rev Microbiol 8:218–230CrossRefGoogle Scholar
  5. 5.
    Drown DM, Zee PC, Brandvain Y, Wade MJ (2013) Evolution of transmission mode in obligate symbionts. Evol Ecol Res 15:43–59PubMedPubMedCentralGoogle Scholar
  6. 6.
    Salem H, Bauer E, Kirsch R, Berasategui A, Cripps M, Weiss B, Koga R, Fukumori K, Vogel H, Fukatsu T, Kaltenpoth M (2017) Drastic genome reduction in an herbivore’s pectinolytic symbiont. Cell 171:1520–1531.e13.  https://doi.org/10.1016/j.cell.2017.10.029 CrossRefPubMedGoogle Scholar
  7. 7.
    Fukatsu T, Hosokawa T (2002) Capsule-transmitted gut symbiotic bacterium of the Japanese common plataspid stinkbug, Megacopta punctatissima. Appl Environ Microbiol 62:389–396.  https://doi.org/10.1128/AEM.68.1.389 CrossRefGoogle Scholar
  8. 8.
    Hosokawa T, Hironaka M, Mukai H, Inadomi K, Suzuki N, Fukatsu T (2012) Mothers never miss the moment: a fine-tuned mechanism for vertical symbiont transmission in a subsocial insect. Anim Behav 83:293–300.  https://doi.org/10.1016/j.anbehav.2011.11.006 CrossRefGoogle Scholar
  9. 9.
    Salem H, Kreutzer E, Sudakaran S, Kaltenpoth M (2012) Actinobacteria as essential symbionts in firebugs and cotton stainers (Hemiptera, Pyrrhocoridae). Environ Microbiol 15:1956–1968.  https://doi.org/10.1111/1462-2920.12001 CrossRefPubMedGoogle Scholar
  10. 10.
    Kikuchi Y, Hosokawa T, Fukatsu T (2007) Insect-microbe mutualism without vertical transmission: a stinkbug acquires a beneficial gut symbiont from the environment every generation. Appl Environ Microbiol 73:4308–4316.  https://doi.org/10.1128/AEM.00067-07 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Mason CJ, Raffa KF (2014) Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae. Environ Entomol 43:595–604.  https://doi.org/10.1603/EN14031 CrossRefPubMedGoogle Scholar
  12. 12.
    Lu M, Hulcr J, Sun J (2016) The role of symbiotic microbes in insect invasions the role of symbiotic microbes in insect invasions. Annu Rev Ecol Evol Syst 47:487–505.  https://doi.org/10.1146/annurev-ecolsys-121415-032050 CrossRefGoogle Scholar
  13. 13.
    Hulcr J, Stelinski LL (2017) The ambrosia symbiosis: from evolutionary ecology to practical management. Annu Rev Entomol 62:285–303.  https://doi.org/10.1146/annurev-ento-031616-035105 CrossRefPubMedGoogle Scholar
  14. 14.
    Six DL, Wingfield MJ (2011) The role of phytopathogenicity in bark beetle-fungus symbioses: a challenge to the classic paradigm. Annu Rev Entomol 56:255–272.  https://doi.org/10.1146/annurev-ento-120709-144839 CrossRefPubMedGoogle Scholar
  15. 15.
    Slippers B, De Groot P, Wingfield, MJ (Eds.). (2011).The Sirex woodwasp and its fungal symbiont: research and management of a worldwide invasive pest. Springer Science & Business MediaGoogle Scholar
  16. 16.
    Ayres MP, Wilkens RT, Ruel JJ, Lombardero MJ, Vallery E (2000) Nitrogen budgets of phloem-feeding bark beetles with and without symbiotic fungi. Ecology 81:2198.  https://doi.org/10.2307/177108 CrossRefGoogle Scholar
  17. 17.
    Thompson BM, Grebenok RJ, Behmer ST, Gruner DS (2013) Microbial symbionts shape the sterol profile of the xylem-feeding woodwasp, Sirex noctilio. J Chem Ecol 39:129–139.  https://doi.org/10.1007/s10886-012-0222-7 CrossRefPubMedGoogle Scholar
  18. 18.
    Morales-Jiménez J, Zúñiga G, Villa-Tanaca L, Hernández-Rodríguez C (2009) Bacterial community and nitrogen fixation in the red turpentine beetle, Dendroctonus valens LeConte (Coleoptera: Curculionidae: Scolytinae). Microb Ecol 58:879–891.  https://doi.org/10.1007/s00248-009-9548-2 CrossRefPubMedGoogle Scholar
  19. 19.
    Morales-Jiménez J, Vera-Ponce de León A, García-Domínguez A, Vera-Ponce de León A, García-Domínguez A, Martínez-Romero E, Zúñiga G, Hernández-Rodríguez C (2013) Nitrogen-fixing and uricolytic bacteria associated with the gut of Dendroctonus rhizophagus and Dendroctonus valens (Curculionidae: Scolytinae). Microb Ecol 66:200–210.  https://doi.org/10.1007/s00248-013-0206-3 CrossRefPubMedGoogle Scholar
  20. 20.
    Boone CK, Keefover-Ring K, Mapes AC, Adams AS, Bohlmann J, Raffa KF (2013) Bacteria associated with a tree-killing insect reduce concentrations of plant defense compounds. J Chem Ecol 39:1003–1006.  https://doi.org/10.1007/s10886-013-0313-0 CrossRefPubMedGoogle Scholar
  21. 21.
    Cheng C, Xu L, Xu D, Lou Q, Lu M, Sun J (2016) Does cryptic microbiota mitigate pine resistance to an invasive beetle-fungus complex? Implications for invasion potential. Sci Rep 6:33110CrossRefGoogle Scholar
  22. 22.
    Xu L, Lou Q, Cheng C, Lu M, Sun J (2015) Gut-associated bacteria of Dendroctonus valens and their involvement in verbenone production. Microb Ecol 70:1012–1023.  https://doi.org/10.1007/s00248-015-0625-4 CrossRefPubMedGoogle Scholar
  23. 23.
    Cardoza YJ, Klepzig KD, Raffa KF (2006) Bacteria in oral secretions of an endophytic insect inhibit antagonistic fungi. Ecol Entomol 31:636–645.  https://doi.org/10.1111/j.1365-2311.2006.00829.x CrossRefGoogle Scholar
  24. 24.
    Scott JJ, Oh D, Yuceer MC et al (2008) Bacterial protection of beetle-fungus mutualism. Science 322:63–63CrossRefGoogle Scholar
  25. 25.
    Adams AS, Currie CR, Cardoza Y, Klepzig KD, Raffa KF (2009) Effects of symbiotic bacteria and tree chemistry on the growth and reproduction of bark beetle fungal symbionts. Can J For Res 39:1133–1147.  https://doi.org/10.1139/X09-034 CrossRefGoogle Scholar
  26. 26.
    Adams AS, Jordan MS, Adams SM, Suen G, Goodwin LA, Davenport KW, Currie CR, Raffa KF (2011) Cellulose-degrading bacteria associated with the invasive woodwasp Sirex noctilio. ISME J 5:1323–1331.  https://doi.org/10.1038/ismej.2011.14 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Therrien J, Mason CJ, Cale JA, Adams A, Aukema BH, Currie CR, Raffa KF, Erbilgin N (2015) Bacteria influence mountain pine beetle brood development through interactions with symbiotic and antagonistic fungi: implications for climate-driven host range expansion. Oecologia 179:467–485.  https://doi.org/10.1007/s00442-015-3356-9 CrossRefPubMedGoogle Scholar
  28. 28.
    Adams AS, Aylward FO, Adams SM, Erbilgin N, Aukema BH, Currie CR, Suen G, Raffa KF (2013) Mountain pine beetles colonizing historical and naive host trees are associated with a bacterial community highly enriched in genes contributing to terpene metabolism. Appl Environ Microbiol 79:3468–3475.  https://doi.org/10.1128/AEM.00068-13 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Vasanthakumar A, Delalibera I, Handelsman J et al (2006) Characterization of gut-associated bacteria in larvae and adults of the southern pine beetle Dendroctonus frontalis Zimmermann. Environ Entomol 35:1710–1717CrossRefGoogle Scholar
  30. 30.
    Delalibera I, Vasanthakumar A, Burwitz B et al (2007) Composition of the bacterial community in the gut of the pine engraver, Ips pini (Say) (Coleoptera) colonizing red pine. Symbiosis 43:97–104Google Scholar
  31. 31.
    Aylward FO, Suen G, Biedermann PHW, Adams AS, Scott JJ, Malfatti SA, Glavina del Rio T, Tringe SG, Poulsen M, Raffa KF, Klepzig KD, Currie CR (2014) Convergent bacterial microbiotas in the fungal agricultural systems of insects. MBio 5:1–10.  https://doi.org/10.1128/mBio.02077-14 CrossRefGoogle Scholar
  32. 32.
    Hulcr J, Adams AS, Raffa K, Hofstetter RW, Klepzig KD, Currie CR (2011) Presence and diversity of streptomyces in Dendroctonus and sympatric bark beetle galleries across North America. Microb Ecol 61:759–768.  https://doi.org/10.1007/s00248-010-9797-0 CrossRefPubMedGoogle Scholar
  33. 33.
    Six DL, Klepzig KD (2004) Dendroctonus bark beetles as model systems for studies on symbiosis. Symbiosis 37:207–232Google Scholar
  34. 34.
    Slippers B, Coutinho TA, Wingfield BD, Wingfield MJ (2003) The genus Amylostereum and its association with woodwasps: a contemporary review. S Afr J Sci 99:70–74Google Scholar
  35. 35.
    Beaver RA, Wilding N, Collins N et al (1989) Insect-fungus relationships in the bark and ambrosia beetles. Insect-fungus interact. Academic Press, London, pp 121–143CrossRefGoogle Scholar
  36. 36.
    Six DL (2003) A comparison of mycangial and phoretic fungi of individual mountain pine beetles. Can J For Res 33:1331–1334.  https://doi.org/10.1139/x03-047 CrossRefGoogle Scholar
  37. 37.
    Bracewell RR, Six DL (2015) Experimental evidence of bark beetle adaptation to a fungal symbiont. Ecol Evol 5:5109–5119.  https://doi.org/10.1002/ece3.1772 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Six DL, Bentz BJ (2003) Fungi associated with the North American spruce beetle, Dendroctonus rufipennis. Can J For Res 33:1815–1820.  https://doi.org/10.1139/x03-107 CrossRefGoogle Scholar
  39. 39.
    Aukema BH, Werner RA, Haberkern KE, Illman BL, Clayton MK, Raffa KF (2005) Quantifying sources of variation in the frequency of fungi associated with spruce beetles: implications for hypothesis testing and sampling methodology in bark beetle–symbiont relationships. For Ecol Manag 217:187–202.  https://doi.org/10.1016/j.foreco.2005.05.062 CrossRefGoogle Scholar
  40. 40.
    Haack RA, Hérard F, Sun J, Turgeon JJ (2009) Managing invasive populations of Asian longhorned beetle and citrus longhorned beetle: a worldwide perspective. Annu Rev Entomol 55:521CrossRefGoogle Scholar
  41. 41.
    Meng PS, Hoover K, Keena MA (2015) Asian longhorned beetle (Coleoptera: Cerambycidae), an introduced pest of maple and other hardwood trees in North America and Europe. J Integr Pest Manag 6:4–4.  https://doi.org/10.1093/jipm/pmv003 CrossRefGoogle Scholar
  42. 42.
    Hu J, Angeli S, Schuetz S, Luo Y, Hajek AE (2009) Ecology and management of exotic and endemic Asian longhorned beetle Anoplophora glabripennis. Agric For Entomol 11:359–375CrossRefGoogle Scholar
  43. 43.
    Geib SM, Jimenez-Gasco MDM, Carlson JE, Hoover K (2009) Effect of host tree species on cellulase activity and bacterial community composition in the gut of larval Asian longhorned beetle. Environ Entomol 38:686–699CrossRefGoogle Scholar
  44. 44.
    Scully ED, Geib SM, Hoover K, Tien M, Tringe SG, Barry KW, Glavina del Rio T, Chovatia M, Herr JR, Carlson JE (2013) Metagenomic profiling reveals lignocellulose degrading system in a microbial community associated with a wood-feeding beetle. PLoS One 8:1–22.  https://doi.org/10.1371/journal.pone.0073827 CrossRefGoogle Scholar
  45. 45.
    Scully ED, Geib SM, Carlson JE, Tien M, McKenna D, Hoover K (2014) Functional genomics and microbiome profiling of the Asian longhorned beetle (Anoplophora glabripennis) reveal insights into the digestive physiology and nutritional ecology of wood feeding beetles. BMC Genomics 15:1096.  https://doi.org/10.1186/1471-2164-15-1096 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Ayayee P, Rosa C, Ferry JG, Felton G, Saunders M, Hoover K (2014) Gut microbes contribute to nitrogen provisioning in a wood-feeding cerambycid. Environ Entomol 43:903–912.  https://doi.org/10.1603/EN14045 CrossRefPubMedGoogle Scholar
  47. 47.
    Ayayee PA, Larsen T, Rosa C et al (2015) Essential amino acid supplementation by gut microbes of a wood-feeding cerambycid. Environ Entomol 45:66–73CrossRefGoogle Scholar
  48. 48.
    Scully ED, Hoover K, Carlson JE, Tien M, Geib SM (2013) Midgut transcriptome profiling of Anoplophora glabripennis, a lignocellulose degrading cerambycid beetle. BMC Genomics 14:850.  https://doi.org/10.1186/1471-2164-14-850 CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Herr JR, Scully ED, Geib SM, Hoover K, Carlson JE, Geiser DM (2016) Genome sequence of Fusarium isolate MYA-4552 from the midgut of Anoplophora glabripennis, an invasive, wood-boring beetle. Genome Announc 4:e00544–e00516CrossRefGoogle Scholar
  50. 50.
    Geib SM, Scully ED, Jimenez-Gasco MDM et al (2012) Phylogenetic analysis of Fusarium solani associated with the Asian longhorned beetle, Anoplophora glabripennis. Insects 3:141–160.  https://doi.org/10.3390/insects3010141 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Grünwald S, Pilhofer M, Höll W (2010) Microbial associations in gut systems of wood- and bark-inhabiting longhorned beetles (Coleoptera: Cerambycidae). Syst Appl Microbiol 33:25–34.  https://doi.org/10.1016/j.syapm.2009.10.002 CrossRefPubMedGoogle Scholar
  52. 52.
    Geib SM, del Mar Jimenez-Gasco M, Carlson JE, Jimenez-Gasco MM, Carlson JE, Tien M, Jabbour R, Hoover K (2009) Microbial community profiling to investigate transmission of bacteria between life stages of the wood-boring beetle, Anoplophora glabripennis. Microb Ecol 58:199–211.  https://doi.org/10.1007/s00248-009-9501-4 CrossRefPubMedGoogle Scholar
  53. 53.
    Keena M, Sanchez V (2006) Reproductive behaviors of Asian longhorned beetle. In: Mastro V, Lance D, Reardon R, Parra G (eds) Proceedings, Emerald Ash Borer Asian Longhorned Beetle Res. Technol. Dev. Meet. U.S. Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team FHTET-2007-04, Cincinnati, OH, pp 123–124Google Scholar
  54. 54.
    Anbutsu H, Togashi K (1997) Oviposition behavior and response to the oviposition scars occupied by eggs in Monochamus saltuarius (Coleoptera: Cerambycidae). Appl Entomol Zool 32:541–549.  https://doi.org/10.1248/cpb.37.3229 CrossRefGoogle Scholar
  55. 55.
    Keena MA (2005) Pourable artificial diet for rearing Anoplophora glabripennis (Coleoptera: Cerambycidae) and methods to optimize larval survival and synchronize development. Ann Entomol Soc Am 98:536–547. https://doi.org/10.1603/0013-8746(2005)098[0536:padfra]2.0.co;2Google Scholar
  56. 56.
    Mason CJ, Long DC, McCarthy EM et al (2017) Within gut physicochemical variation does not correspond to distinct resident fungal and bacterial communities in the tree-killing xylophage, Anoplophora glabripennis. J Insect Physiol 102:27–35.  https://doi.org/10.1016/j.jinsphys.2017.08.003 CrossRefPubMedGoogle Scholar
  57. 57.
    Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624.  https://doi.org/10.1038/ismej.2012.8 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol 2:113–118CrossRefGoogle Scholar
  59. 59.
    White TJ, Bruns T, Lee S, Taylor JW (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR Protoc a Guid to methods Appl 18:315–322Google Scholar
  60. 60.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, Sahl JW, Stres B, Thallinger GG, van Horn DJ, Weber CF (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541.  https://doi.org/10.1128/AEM.01541-09 CrossRefPubMedPubMedCentralGoogle Scholar
  61. 61.
    Gweon HS, Oliver A, Taylor J, Booth T, Gibbs M, Read DS, Griffiths RI, Schonrogge K (2015) PIPITS: an automated pipeline for analyses of fungal internal transcribed spacer sequences from the Illumina sequencing platform. Methods Ecol Evol 6:973–980CrossRefGoogle Scholar
  62. 62.
    Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD (2013) Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol 79:5112–5120CrossRefGoogle Scholar
  63. 63.
    Kress WJ, Erickson DL (2007) A two-locus global dna barcode for land plants: the coding rbcL gene complements the non-coding trnH- psbA spacer region. doi:  https://doi.org/10.1371/journal.pone.0000508
  64. 64.
    Nash S, Snyder W (1962) Quantitative estimations by plate counts of propagules of the bean root rot Fusarium in field soils. Phytopathology 52:567–572Google Scholar
  65. 65.
    R Core Team (2013) R: a language and environment for statistical ComputingGoogle Scholar
  66. 66.
    Bates D, Maechler M, Bolker B, Walker S (2014) lme4: linear mixed-effects models using Eigen and S4Google Scholar
  67. 67.
    Clarke K, Gorley R (2015) PRIMER v7: user manual/tutorial. 296ppGoogle Scholar
  68. 68.
    Schloss PD, Delalibera I, Handelsman J, Raffa KF (2006) Bacteria associated with the guts of two wood-boring beetles: Anoplophora glabripennis and Saperda vestita (Cerambycidae). Environ Entomol 35:625–629.  https://doi.org/10.1603/0046-225X-35.3.625 CrossRefGoogle Scholar
  69. 69.
    Mason CJ, Hanshew AS, Raffa KF (2015) Contributions by host trees and insect activity to bacterial communities in Dendroctonus valens (Coleoptera: Curculionidae) galleries, and their high overlap with other microbial assemblages of bark beetles. Environ Entomol 45:348–346.  https://doi.org/10.1093/ee/nvv184 CrossRefPubMedGoogle Scholar
  70. 70.
    Hallmann J, Sikora RA (1996) Toxicity of fungal endophyte secondary metabolites to plant parasitic nematodes and soil-borne plant pathogenic fungi. 155–162Google Scholar
  71. 71.
    Altomare C, Perrone G, Zonno MC, et al. (2000) Biological characterization of fusapyrone and deoxyfusapyrone, two bioactive secondary metabolites of Fusarium semitectum. 1131–1135Google Scholar
  72. 72.
    Estbjerg H, Ielsen KRFN, Hrane ULFT, Lmholt SUE (2002) Production of trichothecenes and other secondary metabolites by Fusarium culmorum and Fusarium equiseti on common laboratory media and a soil organic matter agar: an ecological interpretationGoogle Scholar
  73. 73.
    Mason CJ, Raffa KF (2014) Acquisition and structuring of midgut bacterial communities in gypsy moth (Lepidoptera: Erebidae) larvae. Environ Entomol 43:595–604.  https://doi.org/10.1603/EN14031 CrossRefPubMedGoogle Scholar
  74. 74.
    Hammer TJ, McMillan WO, Fierer N (2014) Metamorphosis of a butterfly-associated bacterial community. PLoS One 9:e86995.  https://doi.org/10.1371/journal.pone.0086995 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Staudacher H, Kaltenpoth M, Breeuwer JAJ, Menken SBJ (2016) Variability of bacterial communities in the moth Heliothis virescens indicates transient association with the host. 1–21. doi:  https://doi.org/10.5061/dryad.dv35j.Funding
  76. 76.
    Chung SH, Scully ED, Peiffer M, Geib SM, Rosa C, Hoover K, Felton GW (2017) Host plant species determines symbiotic bacterial community mediating suppression of plant defenses. Sci Rep 7:39690.  https://doi.org/10.1038/srep39690 CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Nordlander RAN, Schmidt A, Berasategui A et al. (2016) The gut microbiota of the pine weevil is similar across Europe and resembles that of other conifer-feeding beetles 49:4014–4031.  https://doi.org/10.1111/mec.13702
  78. 78.
    Hongoh Y, Deevong P, Inoue T, Moriya S, Trakulnaleamsai S, Ohkuma M, Vongkaluang C, Noparatnaraporn N, Kudo T (2005) Intra- and interspecific comparisons of bacterial diversity and community structure support coevolution of gut microbiota and termite host. Appl Environ Microbiol 71:6590–6599.  https://doi.org/10.1128/AEM.71.11.6590 CrossRefPubMedPubMedCentralGoogle Scholar
  79. 79.
    Brune A (2014) Symbiotic digestion of lignocellulose in termite guts. Nature Microbiol 12:168–180.  https://doi.org/10.1038/nrmicro3182 CrossRefGoogle Scholar
  80. 80.
    Donnell KO, Sink S, Libeskind-hadas R et al (2015) Discordant phylogenies suggest repeated host shifts in the FusariumEuwallacea ambrosia beetle mutualism. Fungal Genet Biol 82:277–290.  https://doi.org/10.1016/j.fgb.2014.10.014 CrossRefGoogle Scholar
  81. 81.
    Kasson MT, Donnell KO, Rooney AP et al (2013) An inordinate fondness for Fusarium: phylogenetic diversity of fusaria cultivated by ambrosia beetles in the genus Euwallacea on avocado and other plant hosts. Fungal Genet Biol 56:147–157.  https://doi.org/10.1016/j.fgb.2013.04.004 CrossRefPubMedGoogle Scholar
  82. 82.
    Wong AC-N, Chaston JM, Douglas AE (2013) The inconstant gut microbiota of Drosophila species revealed by 16S rRNA gene analysis. ISME J 7:1922–1932.  https://doi.org/10.1038/ismej.2013.86 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Xiang H, Wei G, Jia S, et al (2006) Microbial communities in the larval midgut of laboratory and field populations of cotton bollworm (Helicoverpa armigera) 1092:1085–1092.  https://doi.org/10.1139/W06-064
  84. 84.
    Scully ED, Hoover K, Carlson J, Tien M, Geib SM (2012) Proteomic analysis of Fusarium solani isolated from the Asian longhorned beetle, Anoplophora glabripennis. PLoS One 7:e32990.  https://doi.org/10.1371/journal.pone.0032990 CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Geib SM, Filley TR, Hatcher PG, Hoover K, Carlson JE, Jimenez-Gasco MM, Nakagawa-Izumi A, Sleighter RL, Tien M (2008) Lignin degradation in wood-feeding insects. Proc Natl Acad Sci U S A 105:12932–12937.  https://doi.org/10.1073/pnas.0805257105 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Charles J. Mason
    • 1
  • Alexander M. Campbell
    • 1
  • Erin D. Scully
    • 2
  • Kelli Hoover
    • 1
  1. 1.Department of Entomology and Center for Chemical EcologyThe Pennsylvania State UniversityState CollegeUSA
  2. 2.Stored Product Insect and Engineering Research Unit, USDA, Agricultural Research ServiceCenter for Grain and Animal Health ResearchManhattanUSA

Personalised recommendations