Advertisement

Microbial Ecology

, Volume 75, Issue 1, pp 64–73 | Cite as

Microbial Community Structure and Function Decoupling Across a Phosphorus Gradient in Streams

  • Erick S. LeBrun
  • Ryan S. King
  • Jeffrey A. Back
  • Sanghoon Kang
Microbiology of Aquatic Systems

Abstract

Phosphorus (P) is a key biological element with important and unique biogeochemical cycling in natural ecosystems. Anthropogenic phosphorus inputs have been shown to greatly affect natural ecosystems, and this has been shown to be especially true of freshwater systems. While the importance of microbial communities in the P cycle is widely accepted, the role, composition, and relationship to P of these communities in freshwater systems still hold many secrets. Here, we investigated combined bacterial and archaeal communities utilizing 16S ribosomal RNA (rRNA) gene sequencing and computationally predicted functional metagenomes (PFMs) in 25 streams representing a strong P gradient. We discovered that 16S rRNA community structure and PFMs demonstrate a degree of decoupling between structure and function in the system. While we found that total phosphorus (TP) was correlated to the structure and functional capability of bacterial and archaeal communities in the system, turbidity had a stronger, but largely independent, correlation. At TP levels of approximately 55 μg/L, we see sharp differences in the abundance of numerous ecologically important taxa related to vegetation, agriculture, sediment, and other ecosystem inhabitants.

Keywords

Phosphorus Community function Freshwater Microbial communities MiSeq Turbidity 

Notes

Acknowledgements

The authors thank Morgan Bettcher, Stephen Cook, Stephen Elser, Katherine Hooker, Lauren Housley, and Caleb Robbins for their help in collecting field samples. We also thank Owen Lind and J. Thad Scott for assistance with internal review. We acknowledge the research support by Baylor University Office of Research and Baylor University Center for Reservoir and Aquatic Systems Research (CRASR).

Compliance with Ethical Standards

Conflict of Interest

The authors declare that they have no conflict of interest.

Statement of Data Availability

Sequence data that support the findings of this study have been deposited in GenBank with the BioProject accession code PRJNA350288. The environmental data that support the findings of this study are available from the corresponding author upon reasonable request.

Supplementary material

248_2017_1039_MOESM1_ESM.pdf (524 kb)
ESM 1 (PDF 523 kb)
248_2017_1039_MOESM2_ESM.pdf (88 kb)
ESM 2 (PDF 88 kb)
248_2017_1039_MOESM3_ESM.pdf (79 kb)
ESM 3 (PDF 78 kb)

References

  1. 1.
    Schlesinger WH, Bernhardt ES (2013) Front matter. In: Biogeochem, Third Ed. Academic Press, Boston, pp i–iiGoogle Scholar
  2. 2.
    Van Der Heijden MG, Bardgett RD, Van Straalen NM (2008) The unseen majority: soil microbes as drivers of plant diversity and productivity in terrestrial ecosystems. Ecol Lett 11:296–310CrossRefPubMedGoogle Scholar
  3. 3.
    Cotner JB, Biddanda BA (2002) Small players, large role: microbial influence on biogeochemical processes in pelagic aquatic ecosystems. Ecosystems 5:105–121. doi: 10.1007/s10021-001-0059-3 CrossRefGoogle Scholar
  4. 4.
    Scott T, Cotner J, LaPara T (2012) Variable stoichiometry and homeostatic regulation of bacterial biomass elemental composition. Front Microbiol 3. doi: 10.3389/fmicb.2012.00042
  5. 5.
    Richardson AE, Simpson RJ (2011) Soil microorganisms mediating phosphorus availability update on microbial phosphorus. Plant Physiol 156:989–996CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Godwin CM, Cotner JB (2014) Carbon: phosphorus homeostasis of aquatic bacterial assemblages is mediated by shifts in assemblage composition. Aquat Microb Ecol 73:245–258CrossRefGoogle Scholar
  7. 7.
    Godwin CM, Whitaker EA, Cotner JB (2017) Growth rate and resource imbalance interactively control biomass stoichiometry and elemental quotas of aquatic bacteria. Ecology 98:820–829Google Scholar
  8. 8.
    Tapia-Torres Y, Rodríguez-Torres MD, Elser JJ et al (2016) How to live with phosphorus scarcity in soil and sediment: lessons from bacteria. Appl Environ Microbiol 82:4652–4662. doi: 10.1128/AEM.00160-16 CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Su J-Q, Ding L-J, Xue K et al (2015) Long-term balanced fertilization increases the soil microbial functional diversity in a phosphorus-limited paddy soil. Mol Ecol 24:136–150. doi: 10.1111/mec.13010 CrossRefPubMedGoogle Scholar
  10. 10.
    Louca S, Parfrey LW, Doebeli M (2016) Decoupling function and taxonomy in the global ocean microbiome. Science 353:1272–1277CrossRefPubMedGoogle Scholar
  11. 11.
    García-Palacios P, Vandegehuchte ML, Shaw EA et al (2015) Are there links between responses of soil microbes and ecosystem functioning to elevated CO2, N deposition and warming? A global perspective. Glob Chang Biol 21:1590–1600CrossRefPubMedGoogle Scholar
  12. 12.
    Logue JB, Stedmon CA, Kellerman AM et al (2016) Experimental insights into the importance of aquatic bacterial community composition to the degradation of dissolved organic matter. ISME J 10:533–545CrossRefPubMedGoogle Scholar
  13. 13.
    Pagaling E, Strathdee F, Spears BM et al (2014) Community history affects the predictability of microbial ecosystem development ISME J 8:19–30. doi: 10.1038/ismej.2013.150 CrossRefPubMedGoogle Scholar
  14. 14.
    Sunagawa S, Coelho LP, Chaffron S et al (2015) Structure and function of the global ocean microbiome. Science 348:1261359. doi: 10.1126/science.1261359 CrossRefPubMedGoogle Scholar
  15. 15.
    Tilman D, Knops J, Wedin D et al (1997) The influence of functional diversity and composition on ecosystem processes. Science 277:1300–1302CrossRefGoogle Scholar
  16. 16.
    Xu Z, Malmer D, Langille MG et al (2014) Which is more important for classifying microbial communities: who’s there or what they can do. ISME J 8:2357–2359CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Shade A, Peter H, Allison SD et al (2012) Fundamentals of microbial community resistance and resilience. Front Microbiol 3:417Google Scholar
  18. 18.
    Allison SD, Martiny JB (2008) Resistance, resilience, and redundancy in microbial communities. Proc Natl Acad Sci 105:11512–11519CrossRefPubMedGoogle Scholar
  19. 19.
    Micheli F, Halpern BS (2005) Low functional redundancy in coastal marine assemblages. Ecol Lett 8:391–400CrossRefGoogle Scholar
  20. 20.
    Zeglin LH (2015) Stream microbial diversity in response to environmental changes: review and synthesis of existing research. Front Microbiol 6:454Google Scholar
  21. 21.
    Zinger L, Gobet A, Pommier T (2012) Two decades of describing the unseen majority of aquatic microbial diversity. Mol Ecol 21:1878–1896. doi: 10.1111/j.1365-294X.2011.05362.x CrossRefPubMedGoogle Scholar
  22. 22.
    Anderson DM, Glibert PM, Burkholder JM (2002) Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25:704–726. doi: 10.1007/BF02804901 CrossRefGoogle Scholar
  23. 23.
    Correll DL (1998) The role of phosphorus in the eutrophication of receiving waters: a review. J Environ Qual 27:261. doi: 10.2134/jeq1998.00472425002700020004x CrossRefGoogle Scholar
  24. 24.
    Sharpley AN, Chapra SC, Wedepohl R et al (1994) Managing agricultural phosphorus for protection of surface waters: issues and options. J Environ Qual 23:437–451CrossRefGoogle Scholar
  25. 25.
    Green WR, Haggard BE (2001) Phosphorus and nitrogen concentrations and loads at Illinois River south of Siloam Springs, Arkansas, 1997–1999Google Scholar
  26. 26.
    Haggard BE, Soerens TS (2006) Sediment phosphorus release at a small impoundment on the Illinois River, Arkansas and Oklahoma, USA. Ecol Eng 28:280–287. doi: 10.1016/j.ecoleng.2006.07.013 CrossRefGoogle Scholar
  27. 27.
    Haggard BE (2010) Phosphorus concentrations, loads, and sources within the Illinois River drainage area, northwest Arkansas, 1997–2008. J Environ Qual 39:2113–2120CrossRefPubMedGoogle Scholar
  28. 28.
    American Public Health Association (1998) Standard methods for the examination of water and wastewater. APHA-AWWA-WEF, Washington, D.CGoogle Scholar
  29. 29.
    Biggs BJF, Kilroy C Stream periphyton monitoring manual. Prepared for the New Zealand Ministry for the EnvironmentGoogle Scholar
  30. 30.
    Caporaso JG, Lauber CL, Walters WA et al (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6:1621–1624CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Caporaso JG, Kuczynski J, Stombaugh J et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Aronesty E (2013) Comparison of sequencing utility programs. Open Bioinform J 7Google Scholar
  33. 33.
    Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461CrossRefPubMedGoogle Scholar
  34. 34.
    DeSantis TZ, Hugenholtz P, Larsen N et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Langille MG, Zaneveld J, Caporaso JG et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Kanehisa M, Sato Y, Kawashima M, et al (2015) KEGG as a reference resource for gene and protein annotation. Nucleic Acids Res gkv1070Google Scholar
  38. 38.
    R Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  39. 39.
    McMurdie PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8:e61217CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Oksanen J, Blanchet FG, Kindt R, et al (2016) Vegan: community ecology package. R package version 2.4–1Google Scholar
  41. 41.
    Wickham H (2006) ggplot: an implementation of the grammar of graphics. R Package Version 210Google Scholar
  42. 42.
    Marra G, Wood SN (2011) Practical variable selection for generalized additive models. Comput Stat Data Anal 55:2372–2387CrossRefGoogle Scholar
  43. 43.
    Smouse PE, Long JC, Sokal RR (1986) Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst Zool 35:627–632CrossRefGoogle Scholar
  44. 44.
    Jackson DA (1995) PROTEST: a PROcrustean randomization TEST of community environment concordance. Ecoscience 2:297–303CrossRefGoogle Scholar
  45. 45.
    Butts CT (2008) Network: a package for managing relational data in R. J Stat Softw 24:1–36PubMedPubMedCentralGoogle Scholar
  46. 46.
    Butts CT, Hunter D, Handcock M, et al (2015) Network: Classes for Relational DataGoogle Scholar
  47. 47.
    Csardi G, Nepusz T (2006) The igraph software package for complex network research. Int J Complex Syst 1695:1–9Google Scholar
  48. 48.
    Warnes GR, Bolker B, Bonebakker L, et al (2016) gplots: Various R programming tools for plotting data. R Package Version 301 2Google Scholar
  49. 49.
    Baker ME, King RS, Kahle D (2015) TITAN2: Threshold Indicator Taxa Analysis (Version 2.1). https://rdrr.io/cran/TITAN2/. Accessed 20 June 2016
  50. 50.
    Baker ME, King RS (2010) A new method for detecting and interpreting biodiversity and ecological community thresholds. Methods Ecol Evol 1:25–37CrossRefGoogle Scholar
  51. 51.
    Miki T, Yokokawa T, Matsui K (2014) Biodiversity and multifunctionality in a microbial community: a novel theoretical approach to quantify functional redundancy. Proc R Soc B 281:20132498. doi: 10.1098/rspb.2013.2498 CrossRefPubMedGoogle Scholar
  52. 52.
    Wood SN (2001) mgcv: GAMs and generalized ridge regression for R. R News 1:20–25Google Scholar
  53. 53.
    Lloyd DS, Koenings JP, Laperriere JD (1987) Effects of turbidity in fresh waters of Alaska. N Am J Fish Manag 7:18–33CrossRefGoogle Scholar
  54. 54.
    Hill WR, Fanta SE, Roberts BJ (2009) Quantifying phosphorus and light effects in stream algae. Limnol Oceanogr 54:368–380CrossRefGoogle Scholar
  55. 55.
    Chapman DV, Unesco and World Health Organization and United Nations Environment Programme (eds) (1996) Water quality assessments: a guide to the use of biota, sediments, and water in environmental monitoring. E & FN Spon, LondonGoogle Scholar
  56. 56.
    Davies-Colley RJ, Smith DG (2001) Turbidity suspended sediment, and water clarity: a reviewGoogle Scholar
  57. 57.
    Torsvik V, Øvreås L, Thingstad TF (2002) Prokaryotic diversity—magnitude, dynamics, and controlling factors. Science 296:1064–1066. doi: 10.1126/science.1071698 CrossRefPubMedGoogle Scholar
  58. 58.
    Read DS, Gweon HS, Bowes MJ et al (2015) Catchment-scale biogeography of riverine bacterioplankton. ISME J 9:516–526CrossRefPubMedGoogle Scholar
  59. 59.
    Cardinale BJ, Hillebrand H, Harpole WS et al (2009) Separating the influence of resource “availability” from resource “imbalance” on productivity–diversity relationships. Ecol Lett 12:475–487. doi: 10.1111/j.1461-0248.2009.01317.x CrossRefPubMedGoogle Scholar
  60. 60.
    Chambers PA, McGoldrick DJ, Brua RB et al (2012) Development of environmental thresholds for nitrogen and phosphorus in streams. J Environ Qual 41:7–20CrossRefPubMedGoogle Scholar
  61. 61.
    Taylor JM, King RS, Pease AA, Winemiller KO (2014) Nonlinear response of stream ecosystem structure to low-level phosphorus enrichment. Freshw Biol 59:969–984CrossRefGoogle Scholar
  62. 62.
    Singh V, Stapleton RD (2002) Biotransformations bioremediation technology for health and environmental protection. Elsevier Science Ltd., Amsterdam. http://0-www.sciencedirect.com.fama.us.es/science/publication?issn=00796352&volume=36
  63. 63.
    Saralov AI, Mol’kov DV, Bannikova OM, Solomennyĭ AP, Chikin SM (2001) Intracellular accumulation of monomer precursors of polyphosphates and polyhydroxyalkanoates from Acinetobacter calcoaceticus and Escherichia coli. Mikrobiologiia 70:737–744Google Scholar
  64. 64.
    Cottrell MT, Kirchman DL (2000) Natural assemblages of marine proteobacteria and members of the Cytophaga-Flavobacter cluster consuming low-and high-molecular-weight dissolved organic matter. Appl Environ Microbiol 66:1692–1697CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Gartemann K-H, Kirchner O, Engemann J et al (2003) Clavibacter michiganensis subsp. michiganensis: first steps in the understanding of virulence of a gram-positive phytopathogenic bacterium. J Biotechnol 106:179–191CrossRefPubMedGoogle Scholar
  66. 66.
    Allen TD, Lawson PA, Collins MD et al (2006) Cloacibacterium normanense gen. nov., sp. nov., a novel bacterium in the family Flavobacteriaceae isolated from municipal wastewater. Int J Syst Evol Microbiol 56:1311–1316. doi: 10.1099/ijs.0.64218-0 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Biology, Center for Reservoir and Aquatic Systems ResearchBaylor UniversityWacoUSA

Personalised recommendations