Microbial Ecology

, Volume 75, Issue 1, pp 52–63 | Cite as

Salinity Drives the Virioplankton Abundance but Not Production in Tropical Coastal Lagoons

  • Pedro C. JungerEmail author
  • André M. Amado
  • Rodolfo Paranhos
  • Anderson S. Cabral
  • Saulo M. S. Jacques
  • Vinicius F. Farjalla
Microbiology of Aquatic Systems


Viruses are the most abundant components of microbial food webs and play important ecological and biogeochemical roles in aquatic ecosystems. Virioplankton is regulated by several environmental factors, such as salinity, turbidity, and humic substances. However, most of the studies aimed to investigate virioplankton regulation were conducted in temperate systems combining a limited range of environmental variables. In this study, virus abundance and production were determined and their relation to bacterial and limnological variables was assessed in 20 neighboring shallow tropical coastal lagoons that present wide environmental gradients of turbidity (2.32–571 NTU), water color (1.82–92.49 m−1), dissolved organic carbon (0.71–16.7 mM), salinity (0.13–332.1‰), and chlorophyll-a (0.28 to 134.5 μg L−1). Virus abundance varied from 0.37 × 108 to 117 × 108 virus-like-particle (VLP) mL−1, with the highest values observed in highly salty aquatic systems. Salinity and heterotrophic bacterial abundance were the main variables positively driving viral abundances in these lagoons. We suggest that, with increased salinity, there is a decrease in the protozoan control on bacterial populations and lower bacterial diversity (higher encounter rates with virus specific hosts), both factors positively affecting virus abundance. Virus production varied from 0.68 × 107 to 56.5 × 107 VLP mL−1 h−1 and was regulated by bacterial production and total phosphorus, but it was not directly affected by salinity. The uncoupling between virus abundance and virus production supports that the hypothesis that the lack of grazing pressure on viral and bacterial populations is an important mechanism causing virus abundance to escalate with increasing salt concentrations.


Virus-bacteria dynamics Virus shunt Dilution technique Flow cytometry Carbon cycling Shallow lakes 



PCJ is grateful to Brazilian Council for Research, Development and Innovation (CNPq) for a Master scholarship. VFF is grateful to CNPq for research funds and a productivity grant (Project 306448/2011-4). Authors are thankful to Alice Campos and Thiago Benevides for laboratory and fieldwork assistance, Jean Remy Guimarães for assistance in bacterial production analyses, and Fernanda Ferreira and Anderson dos Santos Junior for support in flow cytometry analyses. The authors also thank Andrew MacDonald for language review and Hugo Sarmento for his critical reading of an earlier version of this manuscript.

Supplementary material

248_2017_1038_MOESM1_ESM.docx (22 kb)
ESM 1 (DOCX 21 kb)


  1. 1.
    Cobián Güemes AG, Youle M, Cantú VA, et al. (2016) Viruses as winners in the game of life Annu Rev Virol 3:197–214. doi: 10.1146/annurev-virology-100114-054952 CrossRefPubMedGoogle Scholar
  2. 2.
    Knowles B, Silveira CB, Bailey BA, et al. (2016) Lytic to temperate switching of viral communities Nature 531:466–470. doi: 10.1038/nature17193 CrossRefPubMedGoogle Scholar
  3. 3.
    Pradeep Ram AS, Chaibi-Slouma S, Keshri J, et al. (2016) Functional responses of bacterioplankton diversity and metabolism to experimental bottom-up and top-down forcings Microb Ecol 72:347–358. doi: 10.1007/s00248-016-0782-0 CrossRefPubMedGoogle Scholar
  4. 4.
    Weitz JS, Stock CA, Wilhelm SW, et al. (2015) A multitrophic model to quantify the effects of marine viruses on microbial food webs and ecosystem processes ISME J 9:1352–1364. doi: 10.1038/ismej.2014.220 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Anesio AM, Hollas C, Granéli W, Laybourn-Parry J (2004) Influence of humic substances on bacterial and viral dynamics in freshwaters Appl. Environ Microbiol 70:4848–4854. doi: 10.1128/AEM.70.8.4848-4854.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Pradeep Ram AS, Rasconi S, Jobard M, et al. (2011) High lytic infection rates but low abundances of prokaryote viruses in a Humic Lake (Vassivière, Massif Central, France) Appl Environ Microbiol 77:5610–5618. doi: 10.1128/AEM.01370-10 CrossRefPubMedCentralGoogle Scholar
  7. 7.
    Mathias CB, Kirschner AKT, Velimirov B (1995) Seasonal variations of virus abundance and viral control of the bacterial production in a backwater system of the Danube River Appl Environ Microbiol 61:3734–3740PubMedPubMedCentralGoogle Scholar
  8. 8.
    Wilhelm S, Jeffrey W, Dean A, et al. (2003) UV radiation induced DNA damage in marine viruses along a latitudinal gradient in the southeastern Pacific Ocean Aquat Microb Ecol 31:1–8. doi: 10.3354/ame031001 CrossRefGoogle Scholar
  9. 9.
    Wommack KE, Colwell RR (2000) Virioplankton: viruses in aquatic ecosystems Microbiol Mol Biol Rev 64:69–114. doi: 10.1128/MMBR.64.1.69-114.2000 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Wigington CH, Sonderegger D, Brussaard CPD, et al. (2016) Re-examination of the relationship between marine virus and microbial cell abundances Nat Microbiol 1:15024. doi: 10.1038/nmicrobiol.2015.24 CrossRefPubMedGoogle Scholar
  11. 11.
    Bettarel Y, Bouvier T, Bouvier C, et al. (2011) Ecological traits of planktonic viruses and prokaryotes along a full-salinity gradient FEMS Microbiol Ecol 76:360–372. doi: 10.1111/j.1574-6941.2011.01054.x CrossRefPubMedGoogle Scholar
  12. 12.
    Pedrós-Alió C, Calderón-Paz JI, MacLean MH, et al. (2000) The microbial food web along salinity gradients FEMS Microbiol Ecol 32:143–155. doi: 10.1016/S0168-6496(00)00025-8 CrossRefPubMedGoogle Scholar
  13. 13.
    Hanson AM, Berges JA, Young EB (2017) Virus morphological diversity and relationship to bacteria and chlorophyll across a freshwater trophic gradient in the Lake Michigan watershed Hydrobiologia. doi: 10.1007/s10750-016-3084-0
  14. 14.
    Cabral AS, Lessa MM, Junger PC, et al. (2017) Virioplankton dynamics are related to eutrophication levels in a tropical urbanized bay PLoS One 12:e0174653. doi: 10.1371/journal.pone.0174653 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Wang C, Wang Y, Paterson JS, et al. (2016) Macroscale distribution of virioplankton and heterotrophic bacteria in the Bohai Sea FEMS Microbiol Ecol 92:1–10. doi: 10.1093/femsec/fiw017 CrossRefGoogle Scholar
  16. 16.
    Barros N, Farjalla VF, Soares MC, et al. (2010) Virus-bacterium coupling driven by both turbidity and hydrodynamics in an Amazonian floodplain lake Appl Environ Microbiol 76:7194–7201. doi: 10.1128/AEM.01161-10 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Amado AM, Meirelles-Pereira F, Vidal LO, et al. (2013) Tropical freshwater ecosystems have lower bacterial growth efficiency than temperate ones Front. Microbiol. 4:1–8. doi: 10.3389/fmicb.2013.00167 CrossRefGoogle Scholar
  18. 18.
    Caliman A, Carneiro LS, Santangelo JM, et al. (2010) Temporal coherence among tropical coastal lagoons: a search for patterns and mechanisms Brazilian J Biol 70:803–814. doi: 10.1590/S1519-69842010000400011 CrossRefGoogle Scholar
  19. 19.
    Suhett AL, Amado AM, Meirelles-Pereira F, et al. (2013) Origin, concentration, availability and fate of dissolved organic carbon in coastal lagoons of the Rio de Janeiro State Acta Limnol Bras 25:326–340. doi: 10.1590/S2179-975X2013000300011 CrossRefGoogle Scholar
  20. 20.
    Gasol JM, del Giorgio PA (2000) Using flow cytometry for counting natural planktonic bacteria and understanding the structure of planktonic bacterial communities Sci Mar 64:197–224. doi: 10.3989/scimar.2000.64n2197 CrossRefGoogle Scholar
  21. 21.
    Brussaard CPD (2004) Optimization of procedures for counting viruses by flow cytometry Appl Environ Microbiol 70:1506–1513. doi: 10.1128/AEM.70.3.1506-1513.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Marie D, Vaulot D, Partensky F (1996) Application of the novel nucleic acid dyes YOYO-1, YO-PRO-1, and PicoGreen for flow cytometric analysis of marine prokaryotes Appl Environ Microbiol 62:1649–1655PubMedPubMedCentralGoogle Scholar
  23. 23.
    Kirchman DL (1993) Leucine incorporation as a measure of biomass production by heterotrophic bacteria. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds.) Handbook of methods in aquatic microbial ecology. Lewis Pub., Boca Raton, pp 509–512Google Scholar
  24. 24.
    Miranda MR, Guimarães JRD, Coelho-Souza AS (2007) [3H]Leucine incorporation method as a tool to measure secondary production by periphytic bacteria associated to the roots of floating aquatic macrophyte J Microbiol Methods 71:23–31. doi: 10.1016/j.mimet.2007.06.020 CrossRefPubMedGoogle Scholar
  25. 25.
    Simon M, Azam F (1989) Protein content and protein synthesis rates of planktonic marine bacteria Mar Ecol Prog Ser 51:201–213. doi: 10.3354/meps051201 CrossRefGoogle Scholar
  26. 26.
    Wetzel RG, Likens GE (2000) Limnological analyses, 3rd edn. Springer, New York. doi: 10.1007/978-1-4757-3250-4 CrossRefGoogle Scholar
  27. 27.
    Wilhelm SW, Brigden SM, Suttle CA (2002) A dilution technique for the direct measurement of viral production: a comparison in stratified and tidally mixed coastal waters Microb Ecol 43:168–173. doi: 10.1007/s00248-001-1021-9 CrossRefPubMedGoogle Scholar
  28. 28.
    Karuza A, Del Negro P, Crevatin E, Fonda Umani S (2010) Viral production in the Gulf of Trieste (Northern Adriatic Sea): preliminary results using different methodological approaches J Exp Mar Bio Ecol 383:96–104. doi: 10.1016/j.jembe.2009.12.003 CrossRefGoogle Scholar
  29. 29.
    Bellas CM, Anesio AM, Telling J, et al. (2013) Viral impacts on bacterial communities in Arctic cryoconite Environ Res Lett 8:45021. doi: 10.1088/1748-9326/8/4/045021 CrossRefGoogle Scholar
  30. 30.
    Lee S, Fuhrman JA (1987) Relationships between biovolume and biomass of naturally derived marine bacterioplankton Appl Environ Microbiol 53:1298–1303. doi: 10.1016/0198-0254(87)96080-8 PubMedPubMedCentralCrossRefGoogle Scholar
  31. 31.
    Grasshoff K, Kremling K, Erhardt M (1999) Methods of seawater analysis, 3rd edn. Wiley-VCH Verlag, WeinheimCrossRefGoogle Scholar
  32. 32.
    Nusch EA, Palme G (1975) Biologische methoden für die praxis der gewässeruntersuchung. GWF–Wasser/AbwasserGoogle Scholar
  33. 33.
    Golterman HL, Clymo RS, Ohnstad MAM (1978) Methods for physical and chemical analysis of fresh waters. Blackwell, OxfordGoogle Scholar
  34. 34.
    Hu CM, Muller-Karger FE, Zepp RG (2002) Absorbance, absorption coefficient, and apparent quantum yield: a comment on common ambiguity in the use of these optical concepts Limnol Oceanogr 47:1261–1267. doi: 10.4319/lo.2002.47.4.1261 CrossRefGoogle Scholar
  35. 35.
    Pinheiro J, Douglas B, DebRoy S, et al. (2015) _nlme: linear and nonlinear mixed effects models_ R Packag version 3:1–122Google Scholar
  36. 36.
    Mazerolle MJ (2015) AICcmodavg: model selection and multimodel inference based on (Q)AIC(c)Google Scholar
  37. 37.
    Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach Ecol Model. doi: 10.1016/j.ecolmodel.2003.11.004
  38. 38.
    Bettarel Y, Desnues A, Rochelle-Newall E (2010) Lytic failure in cross-inoculation assays between phages and prokaryotes from three aquatic sites of contrasting salinity FEMS Microbiol Lett 311:113–118. doi: 10.1111/j.1574-6968.2010.02074.x CrossRefPubMedGoogle Scholar
  39. 39.
    Oren A, Bratbak G, Heldal M (1997) Occurrence of virus-like particles in the Dead Sea Extremophiles 1:143–149. doi: 10.1007/s007920050027 CrossRefPubMedGoogle Scholar
  40. 40.
    Guixa-Boixareu N, Calderón-Paz JI, Heldal M, et al. (1996) Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient Aquat Microb Ecol 11:215–227. doi: 10.3354/ame011215 CrossRefGoogle Scholar
  41. 41.
    Vrede K, Stensdotter U, Lindström ES (2003) Viral and bacterioplankton dynamics in two lakes with different humic contents Microb Ecol 46:406–415. doi: 10.1007/s00248-003-2009-4 CrossRefPubMedGoogle Scholar
  42. 42.
    Almeida RM, Roland F, Cardoso SJ, et al. (2015) Viruses and bacteria in floodplain lakes along a major Amazon tributary respond to distance to the Amazon River Front Microbiol. doi: 10.3389/fmicb.2015.00158
  43. 43.
    Peduzzi P, Schiemer F (2004) Bacteria and viruses in the water column of tropical freshwater reservoirs Environ Microbiol 6:707–715. doi: 10.1111/j.1462-2920.2004.00602.x CrossRefPubMedGoogle Scholar
  44. 44.
    Bettarel Y, Bouvy M, Dumont C, Sime-Ngando T (2006) Virus-bacterium interactions in water and sediment of West African inland aquatic systems Appl Environ Microbiol 72:5274–5282. doi: 10.1128/AEM.00863-06 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Elloumi J, Carrias JF, Ayadi H, et al. (2009) Communities structure of the planktonic halophiles in the solar saltern of Sfax, Tunisia Estuar Coast Shelf Sci 81:19–26. doi: 10.1016/j.ecss.2008.09.019 CrossRefGoogle Scholar
  46. 46.
    Sherr EB, Sherr BF (2002) Significance of predation by protists in aquatic microbial food webs Antonie Van Leeuwenhoek 81:293–308. doi: 10.1023/A:1020591307260 CrossRefPubMedGoogle Scholar
  47. 47.
    Sime-Ngando T, Lucas S, Robin A, et al. (2011) Diversity of virus-host systems in hypersaline Lake Retba, Senegal Environ Microbiol 13:1956–1972. doi: 10.1111/j.1462-2920.2010.02323.x CrossRefPubMedGoogle Scholar
  48. 48.
    Bouvier TC, del Giorgio PA (2002) Compositional changes in free-living bacterial communities along a salinity gradient in two temperate estuaries Limnol Oceanogr 47:453–470. doi: 10.4319/lo.2002.47.2.0453 CrossRefGoogle Scholar
  49. 49.
    Laque T, Farjalla VF, Rosado AS, Esteves FA (2010) Spatiotemporal variation of bacterial community composition and possible controlling factors in tropical shallow lagoons Microb Ecol 59:819–829. doi: 10.1007/s00248-010-9642-5 CrossRefPubMedGoogle Scholar
  50. 50.
    Hewson I, O’Neil JM, Fuhrman JA, Dennison WC (2001) Virus-like particle distribution and abundance in sediments and overlying waters along eutrophication gradients in two subtropical estuaries Limnol Oceanogr 46:1734–1746. doi: 10.4319/lo.2001.46.7.1734 CrossRefGoogle Scholar
  51. 51.
    Cissoko M, Desnues A, Bouvy M, et al. (2008) Effects of freshwater and seawater mixing on virio- and bacterioplankton in a tropical estuary Freshw Biol 53:1154–1162. doi: 10.1111/j.1365-2427.2007.01930.x CrossRefGoogle Scholar
  52. 52.
    Payet JP, McMinds R, Burkepile DE, Vega Thurber RL (2014) Unprecedented evidence for high viral abundance and lytic activity in coral reef waters of the South Pacific Ocean Front Microbiol 5:1–16. doi: 10.3389/fmicb.2014.00493 CrossRefGoogle Scholar
  53. 53.
    Bettarel Y, Sime-Ngando T, Amblard C, Dolan J (2004) Viral activity in two contrasting lake ecosystems Appl Environ Microbiol 70:2941–2951. doi: 10.1128/AEM.70.5.2941-2951.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Winget DM, Helton RR, Williamson KE, et al. (2011) Repeating patterns of virioplankton production within an estuarine ecosystem Proc Natl Acad Sci USA 108:11506–11511. doi: 10.1073/pnas.1101907108 CrossRefPubMedGoogle Scholar
  55. 55.
    Bongiorni L, Magagnini M, Armeni M, et al. (2005) Viral production, decay rates, and life strategies along a trophic gradient in the North Adriatic Sea Appl Environ Microbiol. doi: 10.1128/AEM.71.11.6644
  56. 56.
    Poorvin L, Rinta-Kanto JM, Hutchins DA, Wilhelm SW (2004) Viral release of iron and its bioavailability to marine plankton Limnol Oceanogr 49(5):1734–1741. doi: 10.4319/lo.2004.49.5.1734 CrossRefGoogle Scholar
  57. 57.
    Weinbauer MG, Christaki U, Nedoma J, Simek K (2003) Comparing the effects of resource enrichment and grazing on viral production in a meso-eutrophic reservoir Aquat Microb Ecol 31:137–144CrossRefGoogle Scholar
  58. 58.
    Corinaldesi C, Crevatin E, Del Negro P, et al. (2003) Large-scale spatial distribution of virioplankton in the Adriatic Sea: testing the trophic state control hypothesis Appl Environ Microbiol 69:2664–2673. doi: 10.1128/AEM.69.5.2664-2673.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Tuomi P, Fagerbakke KM, Bratbak G, Heldal M (1995) Nutritional enrichment of a microbial community: the effects on activity, elemental composition, community structure and virus production FEMS Microbiol Ecol 16:123–134. doi: 10.1016/0168-6496(94)00076-9 CrossRefGoogle Scholar
  60. 60.
    Maat DS, van Bleijswijk JDL, Witte HJ, Brussaard CPD (2016) Virus production in phosphorus-limited Micromonas pusilla stimulated by a supply of naturally low concentrations of different phosphorus sources, far into the lytic cycle FEMS Microbiol Ecol 92:1–34. doi: 10.1093/femsec/fiw136 CrossRefGoogle Scholar
  61. 61.
    Oren A (2011) Thermodynamic limits to microbial life at high salt concentrations Environ Microbiol 13:1908–1923. doi: 10.1111/j.1462-2920.2010.02365.x CrossRefPubMedGoogle Scholar
  62. 62.
    Sleator RD, Hill C (2002) Bacterial osmoadaptation: the role of osmolytes in bacterial stress and virulence FEMS Microbiol Rev 26:49–71. doi: 10.1016/S0168-6445(01)00071-7 CrossRefPubMedGoogle Scholar
  63. 63.
    Weinbauer MG, Höfle MG (1998) Size-specific mortality of lake bacterioplankton by natural virus communities Aquat Microb Ecol 15:103–113. doi: 10.3354/ame015103 CrossRefGoogle Scholar
  64. 64.
    Middelboe M (2000) Bacterial growth rate and marine virus–host dynamics Microb Ecol 40:114–124. doi: 10.1007/s002480000050 PubMedCrossRefGoogle Scholar
  65. 65.
    Kukkaro P, Bamford DH (2009) Virus-host interactions in environments with a wide range of ionic strengths Environ Microbiol Rep 1:71–77. doi: 10.1111/j.1758-2229.2008.00007.x CrossRefPubMedGoogle Scholar
  66. 66.
    Hennes KP, Simon M (1995) Significance of bacteriophage for controlling bacterioplankton in a mesotrophic lake Appl Environ Microbiol 61:333–340PubMedPubMedCentralGoogle Scholar
  67. 67.
    Simek K, Pernthaler J, Weinbauer MG, et al. (2001) Changes in bacterial community composition and dynamics and viral mortality rates associated with enhanced flagellate grazing in a mesoeutrophic reservoir Appl Environ Microbiol 67:2723–2733CrossRefPubMedPubMedCentralGoogle Scholar
  68. 68.
    Fischer UR, Velimirov B (2002) High control of bacterial production by viruses in a eutrophic oxbow lake Aquat Microb Ecol 27:1–12. doi: 10.3354/ame027001 CrossRefGoogle Scholar
  69. 69.
    Fukuda R, Ogawa H, Nagata T (1998) Direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments direct determination of carbon and nitrogen contents of natural bacterial assemblages in marine environments Appl Environ Microbiol 64:3352–3358PubMedPubMedCentralGoogle Scholar
  70. 70.
    Porter K, Russ BE, Dyall-Smith ML (2007) Virus-host interactions in salt lakes Curr Opin Microbiol 10:418–424. doi: 10.1016/j.mib.2007.05.017 CrossRefPubMedGoogle Scholar
  71. 71.
    Knowles B, Bailey B, Boling L, et al. (2017) Variability and host density independence in inductions-based estimates of environmental lysogeny Nat Microbiol 2:17064. doi: 10.1038/nmicrobiol.2017.64 CrossRefPubMedGoogle Scholar
  72. 72.
    Herbert ER, Boon P, Burgin AJ, et al. (2015) A global perspective on wetland salinization: ecological consequences of a growing threat to freshwater wetlands Ecosphere 6:art206. doi: 10.1890/ES14-00534.1 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Pedro C. Junger
    • 1
    • 2
    Email author
  • André M. Amado
    • 3
    • 4
  • Rodolfo Paranhos
    • 5
  • Anderson S. Cabral
    • 5
  • Saulo M. S. Jacques
    • 1
    • 6
  • Vinicius F. Farjalla
    • 1
  1. 1.Lab. Limnologia, Departamento de Ecologia, Instituto de Biologia, Centro de Ciências da SaúdeUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  2. 2.Programa de Pós-Graduação em EcologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  3. 3.Departamento de Biologia, Instituto de Ciências BiológicasUniversidade Federal de Juiz de ForaJuiz de ForaBrazil
  4. 4.Departamento de Oceanografia e Limnologia, Instituto de BiociênciasUniversidade Federal do Rio Grande do NorteNatalBrazil
  5. 5.Laboratório de Hidrobiologia, Instituto de BiologiaUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil
  6. 6.Programa de Pós-Graduação em Ecologia e EvoluçãoUniversidade Estadual do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations