Microbial Ecology

, Volume 75, Issue 1, pp 152–162 | Cite as

Characterizing the Adherence Profiles of Virulent Vibrio parahaemolyticus Isolates

  • Alisha M. Aagesen
  • Sureerat Phuvasate
  • Yi-Cheng Su
  • Claudia C. HäseEmail author
Environmental Microbiology


The human pathogen Vibrio parahaemolyticus is a leading cause of seafood-borne illness in the USA, and infections with V. parahaemolyticus typically result from eating raw or undercooked oysters. V. parahaemolyticus has been shown to be highly resistant to oyster depuration, suggesting that the bacterium possesses specific mechanisms or factors for colonizing oysters and persisting during depuration. In this study, we characterized eight different V. parahaemolyticus strains for differences in resistance to oyster depuration, biofilm formation, and motility. While each strain exhibited distinct phenotypes in the various assays, we determined that biofilm formation on abiotic surfaces, such as glass or plastic, does not directly correlate with bacterial retention in oysters during depuration. However, we did observe that the motility phenotype of a strain appeared to be a better indicator for persistence in the oyster. Further studies examining the molecular mechanisms underlying the observed colonization differences by these and other V. parahaemolyticus strains may provide beneficial insights into what critical factors are required for proficient colonization of the Pacific oyster.


Vibrio Oyster Depuration Biofilms Motility Pili 



We would like to thank Dr. Linda McCarter for kindly providing the opaque, translucent, and non-motile V. parahaemolyticus strains and the Oregon Oyster Farm (Newport, OR) for providing the animals used in this study. This study was funded by the National Research Initiative Food Safety and Epidemiology Program (32.0A) Grant No. 2008–35201–04580 and the Agriculture and Food Research Initiative Grant No. 2011-68003-30005 of the USDA National Institute of Food and Agriculture.


  1. 1.
    Johnson CN, Bowers JC, Griffitt KJ, Molina V, Clostio RW, Pei S, Laws E, Paranjpye RN, Strom MS, Chen A, Hasan NA, Huq A, Noriea 3rd NF, Grimes DJ, Colwell RR (2012) Ecology of Vibrio parahaemolyticus and Vibrio vulnificus in the coastal and estuarine waters of Louisiana, Maryland, Mississippi, and Washington, United States Appl Environ Microb. doi: 10.1128/AEM.01296-12
  2. 2.
    Vieira RH, Costa RA, Menezes FG, Silva GC, Theophilo GN, Rodrigues DP, Maggioni R (2011) Kanagawa-negative, tdh- and trh-positive Vibrio parahaemolyticus isolated from fresh oysters marketed in Fortaleza, Brazil Curr. Microbiol. 63:126–130. doi: 10.1007/s00284-011-9945-x CrossRefPubMedGoogle Scholar
  3. 3.
    Croci L, Suffredini E, Cozzi L, Toti L (2002) Effects of depuration of molluscs experimentally contaminated with Escherichia coli, Vibrio cholerae 01 and Vibrio parahaemolyticus J. Appl. Microbiol. 92:460–465CrossRefPubMedGoogle Scholar
  4. 4.
    Kline KA, Falker S, Dahlberg S, Normark S, Henriques-Normark B (2009) Bacterial adhesins in host-microbe interactions Cell Host Microbe 5:580–592. doi: 10.1016/j.chom.2009.05.011 CrossRefPubMedGoogle Scholar
  5. 5.
    Yildiz FH, Visick KL (2009) Vibrio biofilms: so much the same yet so different Trends Microbiol. 17:109–118. doi: 10.1016/j.tim.2008.12.004 CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Althouse C, Patterson S, Fedorka-Cray P, Isaacson RE (2003) Type 1 fimbriae of Salmonella enterica serovar Typhimurium bind to enterocytes and contribute to colonization of swine in vivo Infect. Immun. 71:6446–6452CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Crepin S, Houle S, Charbonneau ME, Mourez M, Harel J, Dozois CM (2012) Decreased expression of type 1 fimbriae by a pst mutant of uropathogenic Escherichia coli reduces urinary tract infection Infect. Immun. 80:2802–2815. doi: 10.1128/IAI.00162-12 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Aagesen AM, Phuvasate S, Su YC, Häse CC (2013) Persistence of Vibrio parahaemolyticus in the Pacific oyster, Crassostrea gigas, is a multifactorial process involving pili and flagella but not type III secretion systems or phase variation Appl Environ Microb 79:3303–3305. doi: 10.1128/Aem.00314-13 CrossRefGoogle Scholar
  9. 9.
    Tarsi R, Pruzzo C (1999) Role of surface proteins in Vibrio cholerae attachment to chitin Appl Environ Microb 65:1348–1351Google Scholar
  10. 10.
    Meibom KL, Blokesch M, Dolganov NA, Wu CY, Schoolnik GK (2005) Chitin induces natural competence in Vibrio cholerae Science 310:1824–1827. doi: 10.1126/science.1120096 CrossRefPubMedGoogle Scholar
  11. 11.
    Meibom KL, Li XB, Nielsen AT, Wu CY, Roseman S, Schoolnik GK (2004) The Vibrio cholerae chitin utilization program Proceedings of the National Academy of Sciences U S A 101:2524–2529CrossRefGoogle Scholar
  12. 12.
    Attridge SR, Manning PA, Holmgren J, Jonson G (1996) Relative significance of mannose-sensitive hemagglutinin and toxin-coregulated pili in colonization of infant mice by Vibrio cholerae El Tor Infect. Immun. 64:3369–3373PubMedPubMedCentralGoogle Scholar
  13. 13.
    Hsiao A, Liu Z, Joelsson A, Zhu J (2006) Vibrio cholerae virulence regulator-coordinated evasion of host immunity Proceedings of the National Academy of Sciences U S A 103:14542–14547. doi: 10.1073/pnas.0604650103 CrossRefGoogle Scholar
  14. 14.
    Paranjpye RN, Strom MS (2005) A Vibrio vulnificus type IV pilin contributes to biofilm formation, adherence to epithelial cells, and virulence Infect. Immun. 73:1411–1422. doi: 10.1128/IAI.73.3.1411-1422.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Paranjpye RN, Johnson AB, Baxter AE, Strom MS (2007) Role of type IV pilins in persistence of Vibrio vulnificus in Crassostrea virginica oysters Appl Environ Microb 73:5041–5044. doi: 10.1128/AEM.00641-07 CrossRefGoogle Scholar
  16. 16.
    Srivastava M, Tucker MS, Gulig PA, Wright AC (2009) Phase variation, capsular polysaccharide, pilus and flagella contribute to uptake of Vibrio vulnificus by the eastern oyster (Crassostrea virginica) Environ. Microbiol. 11:1934–1944. doi: 10.1111/j.1462-2920.2009.01916.x CrossRefPubMedGoogle Scholar
  17. 17.
    Shime-Hattori A, Iida T, Arita M, Park KS, Kodama T, Honda T (2006) Two type IV pili of Vibrio parahaemolyticus play different roles in biofilm formation FEMS Microbiol. Lett. 264:89–97. doi: 10.1111/j.1574-6968.2006.00438.x CrossRefPubMedGoogle Scholar
  18. 18.
    McFall-Ngai M, Brennan C, Weis V, Lamarcq L (1998) Mannose adhesin-glycan interactions in the Euprymna scolopes-Vibrio fischeri symbiosis. In: Gal L, Halvorson (eds) New Developments in Marine Biotechnology. Plenum Press, New York, pp. 273–280CrossRefGoogle Scholar
  19. 19.
    Stabb EV, Ruby EG (2003) Contribution of pilA to competitive colonization of the squid Euprymna scolopes by Vibrio fischeri Appl Environ Microb 69:820–826CrossRefGoogle Scholar
  20. 20.
    Aagesen AM, Häse CC (2012) Sequence analyses of type IV pili from Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus Microbial Ecol 64:509–524. doi: 10.1007/s00248-012-0021-2 CrossRefGoogle Scholar
  21. 21.
    McCarter LL (2001) Polar flagellar motility of the Vibrionaceae. Microbiol Mol Biol Rev 65: 445–462, table of contents. doi:  10.1128/MMBR.65.3.445-462.2001
  22. 22.
    Kirov SM (2003) Bacteria that express lateral flagella enable dissection of the multifunctional roles of flagella in pathogenesis FEMS Microbiol. Lett. 224:151–159CrossRefPubMedGoogle Scholar
  23. 23.
    McCarter L, Silverman M (1989) Iron regulation of swarmer cell differentiation of Vibrio parahaemolyticus J. Bacteriol. 171:731–736CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    McCarter L, Silverman M (1990) Surface-induced swarmer cell differentiation of Vibrio parahaemolyticus Mol. Microbiol. 4:1057–1062CrossRefPubMedGoogle Scholar
  25. 25.
    Stewart BJ, McCarter LL (2003) Lateral flagellar gene system of Vibrio parahaemolyticus J. Bacteriol. 185:4508–4518. doi: 10.1128/Jb.185.15.4508-4518.2003 CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Gode-Potratz CJ, Kustusch RJ, Breheny PJ, Weiss DS, McCarter LL (2011) Surface sensing in Vibrio parahaemolyticus triggers a programme of gene expression that promotes colonization and virulence Mol. Microbiol. 79:240–263. doi: 10.1111/J.1365-2958.2010.07445.X CrossRefPubMedGoogle Scholar
  27. 27.
    McCarter LL (2004) Dual flagellar systems enable motility under different circumstances J Mol Microb Biotech 7:18–29. doi: 10.1159/000077866 CrossRefGoogle Scholar
  28. 28.
    Kawagishi I, Imagawa M, Imae Y, McCarter L, Homma M (1996) The sodium-driven polar flagellar motor of marine Vibrio as the mechanosensor that regulates lateral flagellar expression Mol. Microbiol. 20:693–699CrossRefPubMedGoogle Scholar
  29. 29.
    Jaques S, McCarter LL (2006) Three new regulators of swarming in Vibrio parahaemolyticus J. Bacteriol. 188:2625–2635. doi: 10.1128/Jb.188.7.2625-2635.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Enos-Berlage JL, Guvener ZT, Keenan CE, McCarter LL (2005) Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus Mol. Microbiol. 55:1160–1182. doi: 10.1111/j.1365-2958.2004.04453.x CrossRefPubMedGoogle Scholar
  31. 31.
    Phuvasate S, Chen MH, Su YC (2012) Reductions of Vibrio parahaemolyticus in Pacific oysters (Crassostrea gigas) by depuration at various temperatures Food Microbiol. 31:51–56. doi: 10.1016/J.Fm.2012.02.004 CrossRefPubMedGoogle Scholar
  32. 32.
    Chae MJ, Cheney D, Su YC (2009) Temperature effects on the depuration of Vibrio parahaemolyticus and Vibrio vulnificus from the American oyster (Crassostrea virginica) J. Food Sci. 74:M62–M66. doi: 10.1111/J.1750-3841.2008.01031.X CrossRefPubMedGoogle Scholar
  33. 33.
    Chiu TH, Duan J, Su YC (2007) Characteristics of virulent Vibrio parahaemolyticus isolated from Oregon and Washington J Food Protect 70:1011–1016CrossRefGoogle Scholar
  34. 34.
    Gonzalez-Escalona N, Martinez-Urtaza J, Romero J, Espejo RT, Jaykus LA, DePaola A (2008) Determination of molecular phylogenetics of Vibrio parahaemolyticus strains by multilocus sequence typing J. Bacteriol. 190:2831–2840. doi: 10.1128/JB.01808-07 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Martinez-Urtaza J, Lozano-Leon A, DePaola A, Ishibashi M, Shimada K, Nishibuchi M, Liebana E (2004) Characterization of pathogenic Vibrio parahaemolyticus isolates from clinical sources in Spain and comparison with Asian and North American pandemic isolates J. Clin. Microbiol. 42:4672–4678. doi: 10.1128/JCM.42.10.4672-4678.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Duan JY, Su YC (2005) Occurrence of Vibrio parahaemolyticus in two oregon oyster-growing bays J. Food Sci. 70:M58–M63CrossRefGoogle Scholar
  37. 37.
    Phuvasate S, Su YC (2013) Impact of water salinity and types of oysters on depuration for reducing Vibrio parahaemolyticus in Pacific oysters (Crassostrea gigas) Food Control 32:569–573. doi: 10.1016/j.foodcont.2013.01.025 CrossRefGoogle Scholar
  38. 38.
    Aagesen AM, Häse CC (2014) Seasonal effects of heat shock on bacterial populations, including artificial Vibrio parahaemolyticus exposure, in the Pacific oyster, Crassostrea gigas Food Microbiol. 38:93–103. doi: 10.1016/J.Fm.2013.08.008 CrossRefPubMedGoogle Scholar
  39. 39.
    Kaysner CA, DePaola A (2004) Bacteriological Analytical Manual: Vibrio. U.S. Food and Drug AdministrationGoogle Scholar
  40. 40.
    Devulder G, de Montclos MP, Flandrois JP (2005) A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model Int J Syst Evol Micr 55:293–302. doi: 10.1099/ijs.0.63222-0 CrossRefGoogle Scholar
  41. 41.
    Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial-DNA in humans and chimpanzees Mol. Biol. Evol. 10:512–526PubMedGoogle Scholar
  42. 42.
    Kumar S, Stecher G, Tamura K (2016) MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets Mol. Biol. Evol. 33:1870–1874. doi: 10.1093/molbev/msw054 CrossRefPubMedGoogle Scholar
  43. 43.
    Boles BR, McCarter LL (2002) Vibrio parahaemolyticus scrABC, a novel operon affecting swarming and capsular polysaccharide regulation J. Bacteriol. 184:5946–5954. doi: 10.1128/Jb.184.21.5946-5954.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Kim YK, McCarter LL (2004) Cross-regulation in Vibrio parahaemolyticus: compensatory activation of polar flagellar genes by the lateral flagellar regulator LafK J. Bacteriol. 186:4014–4018. doi: 10.1128/Jb.186.12.4014-4018.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Abdallah FB, Chaieb K, Zmantar T, Kallel H, Bakhrouf A (2009) Adherence assays and slime production of Vibrio alginolyticus and Vibrio parahaemolyticus Braz. J. Microbiol. 40:394–398CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Tomaras AP, Dorsey CW, Edelmann RE, Actis LA (2003) Attachment to and biofilm formation on abiotic surfaces by Acinetobacter baumannii: involvement of a novel chaperone-usher pili assembly system Microbiology 149:3473–3484. doi: 10.1099/Mic.0.26541-0 CrossRefPubMedGoogle Scholar
  47. 47.
    Love DC, Lovelace GL, Sobsey MD (2010) Removal of Escherichia coli, Enterococcus fecalis, coliphage MS2, poliovirus, and hepatitis A virus from oysters (Crassostrea virginica) and hard shell clams (Mercinaria mercinaria) by depuration Int. J. Food Microbiol. 143:211–217. doi: 10.1016/j.ijfoodmicro.2010.08.028 CrossRefPubMedGoogle Scholar
  48. 48.
    Marino A, Crisafi G, Maugeri TL, Nostro A, Alonzo V (1999) Uptake and retention of Vibrio cholerae non-O1, Salmonella typhi, Escherichia coli and Vibrio harvey by mussels in seawater New Microbiology 22:129–138Google Scholar
  49. 49.
    Marino A, Lombardo L, Fiorentino C, Orlandella B, Monticelli L, Nostro A, Alonzo V (2005) Uptake of Escherichia coli, Vibrio cholerae non-O1 and Enterococcus durans by, and depuration of mussels (Mytilus galloprovincialis) Int. J. Food Microbiol. 99:281–286. doi: 10.1016/j.ijfoodmicro.2004.09.003 CrossRefPubMedGoogle Scholar
  50. 50.
    Mueller RS, McDougald D, Cusumano D, Sodhi N, Kjelleberg S, Azam F, Bartlett DH (2007) Vibrio cholerae strains possess multiple strategies for abiotic and biotic surface colonization J. Bacteriol. 189:5348–5360. doi: 10.1128/JB.01867-06 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Snoussi M, Noumi E, Cheriaa J, Usai D, Sechi LA, Zanetti S, Bakhrouf A (2008) Adhesive properties of environmental Vibrio alginolyticus strains to biotic and abiotic surfaces New Microbiol. 31:489–500PubMedGoogle Scholar
  52. 52.
    McQueary CN, Actis LA (2011) Acinetobacter baumannii biofilms: variations among strains and aorrelations with other cell properties J. Microbiol. 49:243–250. doi: 10.1007/S12275-011-0343-7 CrossRefPubMedGoogle Scholar
  53. 53.
    Watnick PI, Fullner KJ, Kolter R (1999) A role for the mannose-sensitive hemagglutinin in biofilm formation by Vibrio cholerae El Tor J. Bacteriol. 181:3606–3609PubMedPubMedCentralGoogle Scholar
  54. 54.
    Chiavelli DA, Marsh JW, Taylor RK (2001) The mannose-sensitive hemagglutinin of Vibrio cholerae promotes adherence to zooplankton Appl Environ Microb 67:3220–3225. doi: 10.1128/AEM.67.7.3220-3225.2001 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Alisha M. Aagesen
    • 1
  • Sureerat Phuvasate
    • 2
  • Yi-Cheng Su
    • 2
  • Claudia C. Häse
    • 1
    Email author
  1. 1.Department of Biomedical Sciences, College of Veterinary MedicineOregon State UniversityCorvallisUSA
  2. 2.Seafood Research and Education CenterOregon State UniversityAstoriaUSA

Personalised recommendations