Advertisement

Microbial Ecology

, Volume 75, Issue 1, pp 239–254 | Cite as

Sponge Prokaryote Communities in Taiwanese Coral Reef and Shallow Hydrothermal Vent Ecosystems

  • F. J. R. C. Coelho
  • D. F. R. Cleary
  • N. C. M. Gomes
  • A. R. M. Pólonia
  • Y. M. Huang
  • L.-L. Liu
  • N. J. de Voogd
Invertebrate Microbiology

Abstract

Previously, it was believed that the prokaryote communities of typical ‘low-microbial abundance’ (LMA) or ‘non-symbiont harboring’ sponges were merely subsets of the prokaryote plankton community. Recent research has, however, shown that these sponges are dominated by particular clades of Proteobacteria or Cyanobacteria. Here, we expand on this research and assess the composition and putative functional profiles of prokaryotic communities from LMA sponges collected in two ecosystems (coral reef and hydrothermal vent) from vicinal islands of Taiwan with distinct physicochemical conditions. Six sponge species identified as Acanthella cavernosa (Bubarida), Echinodictyum asperum, Ptilocaulis spiculifer (Axinellida), Jaspis splendens (Tetractinellida), Stylissa carteri (Scopalinida) and Suberites sp. (Suberitida) were sampled in coral reefs in the Penghu archipelago. One sponge species provisionally identified as Hymeniacidon novo spec. (Suberitida) was sampled in hydrothermal vent habitat. Each sponge was dominated by a limited set of operational taxonomic units which were similar to sequences from organisms previously obtained from other LMA sponges. There was a distinct bacterial community between sponges collected in coral reef and in hydrothermal vents. The putative functional profile revealed that the prokaryote community from sponges collected in hydrothermal vents was significantly enriched for pathways related to DNA replication and repair.

Keywords

Archaea Bacteria Low microbial abundance sponges Hydrothermal vent Reef coral 

Notes

Acknowledgements

Thanks are due, for the financial support to CESAM (UID/AMB/50017/2013), to FCT/MEC through national funds, and the co-funding by the FEDER, within the PT2020 Partnership Agreement and Compete 2020. This work was also supported by the projects LESS CORAL (PTDC/AAC-AMB/115304/2009) and EcotechSponge (PTDC/BIA-MIC/6473/2014 - POCI-01-0145-FEDER-016531) Thank are also due to the Ministry of Science and Technology (MOST), Taiwan under grant NSC 102-2815-C-346-010-B and the Asia-Pacific Ocean Research Center, National Sun Yat-sen University, supported by the Ministry of Education, Taiwan. Francisco J. R. C. Coelho was supported by a postdoctoral scholarship (SFRH/BPD/92366/2013) financed by the Portuguese Foundation for Science and Technology. We are grateful for the support in the field by Julian Cleary, Floris Cleary and Katherine Liao.

Supplementary material

248_2017_1023_MOESM1_ESM.docx (696 kb)
ESM 1 (DOCX 695 kb)

References

  1. 1.
    McFall-Ngai M, Hadfield MG, Bosch TCG, Carey HV, Domazet-Lošo T, Douglas AE, Dubilier N, Eberl G, Fukami T, Gilbert SF, Hentschel U, King N, Kjelleberg S, Knoll AH, Kremer N, Mazmanian SK, Metcalf JL, Nealson K, Pierce NE, Rawls JF, Reid A, Ruby EG, Rumpho M, Sanders JG, Tautz D, Wernegreen JJ (2013) Animals in a bacterial world, a new imperative for the life sciences Proc Natl Acad Sci U S A 110:3229–3236. doi: 10.1073/pnas.1218525110 CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Woyke T, Teeling H, Ivanova NN, Huntemann M, Richter M, Gloeckner FO, Boffelli D, Anderson IJ, Barry KW, Shapiro HJ, Szeto E, Kyrpides NC, Mussmann M, Amann R, Bergin C, Ruehland C, Rubin EM, Dubilier N (2006) Symbiosis insights through metagenomic analysis of a microbial consortium Nature 443:950–955 http://www.nature.com/nature/journal/v443/n7114/suppinfo/nature05192_S1.html CrossRefPubMedGoogle Scholar
  3. 3.
    Thomas T, Moitinho-Silva L, Lurgi M, Bjork JR, Easson C, Astudillo-Garcia C, Olson JB, Erwin PM, Lopez-Legentil S, Luter H, Chaves-Fonnegra A, Costa R, Schupp PJ, Steindler L, Erpenbeck D, Gilbert J, Knight R, Ackermann G, Victor Lopez J, Taylor MW, Thacker RW, Montoya JM, Hentschel U, Webster NS (2016) Diversity, structure and convergent evolution of the global sponge microbiome Nat Commun 7:11870. doi: 10.1038/ncomms11870 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Taylor MW, Radax R, Steger D, Wagner M (2007) Sponge-associated microorganisms: evolution, ecology, and biotechnological potential Microbiol Mol Biol Rev 71:295–347. doi: 10.1128/mmbr.00040-06 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Wilkinson CR (1983) Net primary productivity in coral reef sponges Science 219:410–412. doi: 10.1126/science.219.4583.410 CrossRefPubMedGoogle Scholar
  6. 6.
    Hochmuth T, Piel J (2009) Polyketide synthases of bacterial symbionts in sponges—evolution-based applications in natural products research Phytochemistry 70:1841–1849. doi: 10.1016/j.phytochem.2009.04.010 CrossRefPubMedGoogle Scholar
  7. 7.
    Piel J (2009) Metabolites from symbiotic bacteria Nat Prod Rep 26:338–362. doi: 10.1039/B703499G CrossRefPubMedGoogle Scholar
  8. 8.
    Cleary DFR, Becking LE, NJd V, ACC P, ARM P, Egas C, NCM G (2013) Habitat- and host-related variation in sponge bacterial symbiont communities in Indonesian waters FEMS Microbiol Ecol 85:465–482. doi: 10.1111/1574-6941.12135 CrossRefPubMedGoogle Scholar
  9. 9.
    Cleary DFR, de Voogd NJ, Polónia ARM, Freitas R, Gomes NCM (2015) Composition and predictive functional analysis of bacterial communities in seawater, sediment and sponges in the Spermonde archipelago, Indonesia Microb Ecol 70:889–903. doi: 10.1007/s00248-015-0632-5 CrossRefPubMedGoogle Scholar
  10. 10.
    de Voogd NJ, Cleary DFR, Polónia ARM, Gomes NCM (2015) Bacterial community composition and predicted functional ecology of sponges, sediment and seawater from the thousand islands reef complex, West Java, Indonesia. FEMS Microbiol Ecol 91. doi: 10.1093/femsec/fiv019
  11. 11.
    Erwin PM, Coma R, López-Sendino P, Serrano E, Ribes M (2015) Stable symbionts across the HMA-LMA dichotomy: low seasonal and interannual variation in sponge-associated bacteria from taxonomically diverse hosts. FEMS Microbiol Ecol 91. doi: 10.1093/femsec/fiv115
  12. 12.
    Hentschel U, Piel J, Degnan SM, Taylor MW (2012) Genomic insights into the marine sponge microbiome Nat Rev Microbiol 10:641–654CrossRefPubMedGoogle Scholar
  13. 13.
    Vacelet J, Donadey C (1977) Electron microscope study of the association between some sponges and bacteria J Exp Mar Biol Ecol 30:301–314. doi: 10.1016/0022-0981(77)90038-7 CrossRefGoogle Scholar
  14. 14.
    Giles EC, Kamke J, Moitinho-Silva L, Taylor MW, Hentschel U, Ravasi T, Schmitt S (2013) Bacterial community profiles in low microbial abundance sponges FEMS Microbiol Ecol 83:232–241. doi: 10.1111/j.1574-6941.2012.01467.x CrossRefPubMedGoogle Scholar
  15. 15.
    Hoeksema B (2007) Delineation of the Indo-Malayan centre of maximum marine biodiversity: the coral triangle. In: Renema, W (ed) Biogeography in time and place: Distributions, barriers and islands, Netherlands, pp 117–178Google Scholar
  16. 16.
    Veron JEN, Devantier LM, Turak E, Green AL, Kininmonth S, Stafford-Smith M, Peterson N (2009) Delineating the Coral Triangle, Galaxea J Coral Reef Stud 11:91–100. doi: 10.3755/galaxea.11.91 CrossRefGoogle Scholar
  17. 17.
    Hsieh HJ, Chen CA, Dai C-F, Ou W, Tsai W-S, Su W-C (2007) From the drawing board to the field: an example for establishing an MPA in Penghu, Taiwan Aquat Conserv 17:619–635. doi: 10.1002/aqc.826 CrossRefGoogle Scholar
  18. 18.
    Huang YM, de Voogd NJ, Cleary DFR, Li T-H, Mok H-K, Ueng J-P (2016) Biodiversity pattern of subtidal sponges (Porifera: Demospongiae) in the Penghu Archipelago (Pescadores), Taiwan J Mar Biol Assoc UK 96:417–427. doi: 10.1017/S002531541500017X CrossRefGoogle Scholar
  19. 19.
    Kuo F-L, Huang Y (2015) The biodiversity and distribution of subtidal sponges (Porifera) in the South Penghu Marine National Park, Taiwan. Marine National Park HeadquartersGoogle Scholar
  20. 20.
    Chentung AC, Bingjye W, Jungfu H, Jiannyuh L, Fuwen K, Yuehyuan T, Hsienshiow T (2005) Investigation into extremely acidic hydrothermal fluids off Kueishan Tao, Taiwan, China. Chinese Society of Oceanography, BeijingGoogle Scholar
  21. 21.
    Chen C-TA, Zeng Z, Kuo F-W, Yang TF, Wang B-J, Tu Y-Y (2005) Tide-influenced acidic hydrothermal system offshore NE Taiwan Chem Geol 224:69–81. doi: 10.1016/j.chemgeo.2005.07.022 CrossRefGoogle Scholar
  22. 22.
    Tsai T-L, Liu S-M, Lee S-C, Chen W-J, Chou S-H, Hsu T-C, Guo G-L, Hwang W-S, Wiegel J (2011) Ethanol production efficiency of an anaerobic hemicellulolytic thermophilic bacterium, strain NTOU1, isolated from a marine shallow hydrothermal vent in Taiwan Microbes Environ 26:317–324. doi: 10.1264/jsme2.ME10202 CrossRefPubMedGoogle Scholar
  23. 23.
    Wang L, Cheung MK, Kwan HS, Hwang J-S, Wong CK (2015) Microbial diversity in shallow-water hydrothermal sediments of Kueishan Island, Taiwan as revealed by pyrosequencing J Basic Microbiol 55:1308–1318. doi: 10.1002/jobm.201400811 CrossRefPubMedGoogle Scholar
  24. 24.
    Jeng M-S, Clark PF, Ng PKL (2004) The first zoea, megalopa, and first crab stage of the hydrothermal vent crab Xenograpsus testudinatus (Decapoda: Brachyura: Grapsoidea) and the systematic implications for the Varunidae J Crustac Biol 24:188–212CrossRefGoogle Scholar
  25. 25.
    Chen Y-G, Liu T-K (1996) Sea level changes in the last several thousand years, Penghu Islands, Taiwan Strait Quat Res 45:254–262. doi: 10.1006/qres.1996.0026 CrossRefGoogle Scholar
  26. 26.
    Liao E, Jiang Y, Li L, Hong H, Yan X (2013) The cause of the 2008 cold disaster in the Taiwan Strait Ocean Model 62:1–10. doi: 10.1016/j.ocemod.2012.11.004 CrossRefGoogle Scholar
  27. 27.
    Chen C-TA, Wang B-J, Huang JF, Lou JY, Kuo FW, Tu Y-Y, Tsai HS (2005) Investigation into extremely acidic hydrothermal fluids off Kueishantao Islet, Taiwan Acta Oceanol Sin 24:125–133Google Scholar
  28. 28.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336Google Scholar
  29. 29.
    Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial amplicon reads Nat Methods 10:996–998. doi: 10.1038/nmeth.2604 CrossRefPubMedGoogle Scholar
  30. 30.
    Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R (2011) UCHIME improves sensitivity and speed of chimera detection Bioinformatics 27:2194–2200. doi: 10.1093/bioinformatics/btr381 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Wang Q, Garrity G, Tiedje J, Cole J (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy Appl Environ Microbiol 73:5261–5267CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    R Core Team (2013) R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria ISBN 3-900051-07-0. Available from http://www.Rproject.orghttp://www.R-project.org
  33. 33.
    Zhang Z, Schwartz S, Wagner L, Miller W (2000) A greedy algorithm for aligning DNA sequences J Comput Biol 7:203–214. doi: 10.1089/10665270050081478 CrossRefPubMedGoogle Scholar
  34. 34.
    Gomes NCM, Cleary DFR, Pinto FN, Egas C, Almeida A, Cunha A, Mendonça-Hagler L CS, Smalla K (2010) Taking root: enduring effect of rhizosphere bacterial colonization in mangroves. PLoS One 5: e14065. doi: 10.1371/journal.pone.0014065
  35. 35.
    Oksanen J, Guillaume Blanchet F, Kindt R, Legendre P, Minchin PR, O'Hara RB, Simpson GL, Solymos P, Henry H, Stevens M, Wagner H (2012). vegan: Community Ecology PackageR package version 20–3. https://cran.r-project.org/package=vegan
  36. 36.
    Martins P, Cleary DFR, Pires ACC, Rodrigues AM, Quintino V, Calado R, Gomes NCM (2013) Molecular analysis of bacterial communities and detection of potential pathogens in a recirculating aquaculture system for Scophthalmus maximus and Solea senegalensis PLoS One 8:e80847. doi: 10.1371/journal.pone.0080847 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis Version 6.0 Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences Nat Biotechnol 31:814–821CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Coelho FJRC, Cleary DFR, Rocha RJM, Calado R, Castanheira JM, Rocha SM, Silva AMS, Simões MMQ, Oliveira V, Lillebø A, Almeida A, Cunha Â, Lopes I, Ribeiro R, Moreira-Santos M, Marques CR, Costa R, Pereira R, Gomes NCM (2015) Unraveling the interactive effects of climate change and oil contamination on laboratory simulated estuarine benthic communities Glob Chang Biol 21:1871–1886. doi: 10.1111/gcb.12801 CrossRefPubMedGoogle Scholar
  40. 40.
    Weigel BL, Erwin PM (2016) Intraspecific variation in microbial symbiont communities of the sun sponge, Hymeniacidon heliophila, from intertidal and subtidal habitats Appl Environ Microbiol 82:650–658. doi: 10.1128/AEM.02980-15 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Cárdenas CA, Bell JJ, Davy SK, Hoggard M, Taylor MW (2014) Influence of environmental variation on symbiotic bacterial communities of two temperate sponges FEMS Microbiol Ecol 88:516–527. doi: 10.1111/1574-6941.12317 CrossRefPubMedGoogle Scholar
  42. 42.
    Blanquer A, Uriz MJ, Galand PE (2013) Removing environmental sources of variation to gain insight on symbionts vs. transient microbes in high and low microbial abundance sponges Environ Microbiol 15:3008–3019. doi: 10.1111/1462-2920.12261 PubMedCrossRefGoogle Scholar
  43. 43.
    Bright M, Bulgheresi S (2010) A complex journey: transmission of microbial symbionts Nat Rev Microbiol 8:218–230 http://www.nature.com/nrmicro/journal/v8/n3/suppinfo/nrmicro2262_S1.html CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Reveillaud J, Maignien L, Eren MA, Huber JA, Apprill A, Sogin ML, Vanreusel A (2014) Host-specificity among abundant and rare taxa in the sponge microbiome ISME J 8:1198–1209. doi: 10.1038/ismej.2013.227 CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Wiese J, Thiel V, Gärtner A, Schmaljohann R, Imhoff JF (2009) Kiloniella laminariae gen. nov., sp. nov., an alphaproteobacterium from the marine macroalga Laminaria saccharina Int J Syst Evol Microbiol 59:350–356. doi: 10.1099/ijs.0.001651-0 CrossRefPubMedGoogle Scholar
  46. 46.
    Meron D, Atias E, Iasur Kruh L, Elifantz H, Minz D, Fine M, Banin E (2011) The impact of reduced pH on the microbial community of the coral Acropora eurystoma ISME J 5:51–60 http://www.nature.com/ismej/journal/v5/n1/suppinfo/ismej2010102s1.html CrossRefPubMedGoogle Scholar
  47. 47.
    Becking LE, Renema W, Santodomingo NK, Hoeksema BW, Tuti Y, de Voogd NJ (2011) Recently discovered landlocked basins in Indonesia reveal high habitat diversity in anchialine systems Hydrobiologia 677:89–105. doi: 10.1007/s10750-011-0742-0 CrossRefGoogle Scholar
  48. 48.
    Takai K, Miyazaki M, Hirayama H, Nakagawa S, Querellou J, Godfroy A (2009) Isolation and physiological characterization of two novel, piezophilic, thermophilic chemolithoautotrophs from a deep-sea hydrothermal vent chimney Environ Microbiol 11:1983–1997. doi: 10.1111/j.1462-2920.2009.01921.x CrossRefPubMedGoogle Scholar
  49. 49.
    Urios L, Michotey V, Intertaglia L, Lesongeur F, Lebaron P (2008) Nisaea denitrificans gen. nov., sp. nov. and Nisaea nitritireducens sp. nov., two novel members of the class Alphaproteobacteria from the Mediterranean Sea Int J Syst Evol Microbiol 58:2336–2341. doi: 10.1099/ijs.0.64592-0 CrossRefPubMedGoogle Scholar
  50. 48.
    Tapley DW, Buettner GR, Shick JM (1999) Free radicals and chemiluminescence as products of the spontaneous oxidation of sulfide in seawater, and their biological implications Biol Bull 196:52–56CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Lysek N, Kinscherf R, Claus R, Lindel T (2003) l-5-Hydroxytryptophan: antioxidant and anti-apoptotic principle of the intertidal sponge Hymeniacidon heliophila Z Naturforsch C 58:568–572CrossRefPubMedGoogle Scholar
  52. 52.
    Seeberg E, Eide L, Bjørås M (1995) The base excision repair pathway Trends Biochem Sci 20:391–397. doi: 10.1016/S0968-0004(00)89086-6 CrossRefPubMedGoogle Scholar
  53. 53.
    Li G-M (2008) Mechanisms and functions of DNA mismatch repair Cell Res 18:85–98CrossRefPubMedGoogle Scholar
  54. 54.
    Xie W, Wang F, Guo L, Chen Z, Sievert SM, Meng J, Huang G, Li Y, Yan Q, Wu S, Wang X, Chen S, He G, Xiao X, Xu A (2011) Comparative metagenomics of microbial communities inhabiting deep-sea hydrothermal vent chimneys with contrasting chemistries ISME J 5:414–426 http://www.nature.com/ismej/journal/v5/n3/suppinfo/ismej2010144s1.html CrossRefPubMedGoogle Scholar
  55. 55.
    Mao Z, Bozzella M, Seluanov A, Gorbunova V (2008) DNA repair by nonhomologous end joining and homologous recombination during cell cycle in human cells Cell Cycle (Georgetown, Tex) 7:2902–2906CrossRefGoogle Scholar
  56. 56.
    Morrow KM, Bourne DG, Humphrey C, Botte ES, Laffy P, Zaneveld J, Uthicke S, Fabricius KE, Webster NS (2015) Natural volcanic CO2 seeps reveal future trajectories for host-microbial associations in corals and sponges. ISME J 9:894–908. doi: 10.1038/ismej.2014.188

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • F. J. R. C. Coelho
    • 1
  • D. F. R. Cleary
    • 1
  • N. C. M. Gomes
    • 1
  • A. R. M. Pólonia
    • 1
    • 2
  • Y. M. Huang
    • 3
    • 4
  • L.-L. Liu
    • 5
  • N. J. de Voogd
    • 4
  1. 1.Department of Biology & CESAMUniversity of AveiroAveiroPortugal
  2. 2.Center for Neuroscience and Cell BiologyUniversity of CoimbraCoimbraPortugal
  3. 3.Department of Marine RecreationNational Penghu University of Science and TechnologyPenghuTaiwan
  4. 4.Naturalis Biodiversity CenterLeidenthe Netherlands
  5. 5.Department of OceanographyNational Sun Yet-Sen UniversityKaohsiungTaiwan

Personalised recommendations