Advertisement

Microbial Ecology

, Volume 75, Issue 1, pp 183–191 | Cite as

The Microbiome of Eucalyptus Roots under Different Management Conditions and Its Potential for Biological Nitrogen Fixation

  • Eduardo da Silva Fonseca
  • Raquel Silva Peixoto
  • Alexandre Soares Rosado
  • Fabiano de Carvalho Balieiro
  • James M. Tiedje
  • Caio Tavora Coelho da Costa Rachid
Plant Microbe Interactions

Abstract

Eucalyptus plantations offer a cost-effective and renewable source of raw material. There is substantial interest in improving forestry production, especially through sustainable strategies such as the use of plant growth-promoting bacteria. However, little is known about Eucalyptus microbiology. In this study, the endophytic bacterial community was assessed in Eucalyptus urograndis roots using culture-dependent and culture-independent techniques with plants grown under different conditions. Three phyla accounted for approximately 95% of the community, with Actinobacteria corresponding to approximately 59%. This contrasts with previous studies in which Actinobacteria accounted for only 5 to 10%. Our data also revealed a high diversity of bacteria, with 359 different genera but a high level of dominance. Six genera, Mycobacterium, Bradyrhizobium, Streptomyces, Bacillus, Actinospica, and Burkholderia, accounted for more than 50% of the classified sequences. We observed a significant influence of the treatments on some genera, causing changes in the bacterial community structure. The obtained data also suggest that Eucalyptus may benefit from biological nitrogen fixation, with many abundant genera being closely related to nitrogen-fixing bacteria. Using N-depleted media, we also cultured 95 bacterial isolates, of which 24 tested positive for the nifH gene and were able to maintain growth without any N source in the medium.

Keywords

Endophytic bacteria Eucalyptus microbiology Plant microbiome Roots microbiology Nitrogen fixing bacteria 

Notes

Compliance with Ethical Standards

Funding

This work received funding from the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) and Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (FAPERJ) and Fundação de Amparo à Pesquisa do Estado de São Paulo (Fapesp).

Conflict of Interests

The authors have declared that no competing interests exist.

Supplementary material

248_2017_1014_MOESM1_ESM.docx (932 kb)
ESM 1 (DOCX 931 kb)
248_2017_1014_MOESM2_ESM.docx (312 kb)
ESM 2 (DOCX 311 kb)
248_2017_1014_MOESM3_ESM.docx (483 kb)
ESM 3 (DOCX 483 kb)
248_2017_1014_MOESM4_ESM.docx (613 kb)
ESM 4 (DOCX 613 kb)
248_2017_1014_MOESM5_ESM.xlsx (79 kb)
ESM 5 (XLSX 79 kb)

References

  1. 1.
    IBÁ (2016) Annual report. Brazilian Tree Industry. http://iba.org/images/shared/Biblioteca/IBA_RelatorioAnual2016_.pdf
  2. 2.
    INDUFOR (2012) Strategic review on the future of forest plantationsGoogle Scholar
  3. 3.
    Laclau J-P, Almeida JCR, Goncalves JLM, et al. (2008) Influence of nitrogen and potassium fertilization on leaf lifespan and allocation of above-ground growth in eucalyptus plantations Tree Physiol. 29:111–124. doi: 10.1093/treephys/tpn010 CrossRefPubMedGoogle Scholar
  4. 4.
    Stape JL, Binkley D, Ryan MG, et al. (2010) The Brazil Eucalyptus potential productivity project: influence of water, nutrients and stand uniformity on wood production For. Ecol. Manag. 259:1684–1694. doi: 10.1016/j.foreco.2010.01.012 CrossRefGoogle Scholar
  5. 5.
    Laclau J-P, Ranger J, Deleporte P, et al. (2005) Nutrient cycling in a clonal stand of Eucalyptus and an adjacent savanna ecosystem in Congo For. Ecol. Manag. 210:375–391. doi: 10.1016/j.foreco.2005.02.028 CrossRefGoogle Scholar
  6. 6.
    Laclau J-P, Ranger J, de Moraes Gonçalves JL, et al. (2010) Biogeochemical cycles of nutrients in tropical Eucalyptus plantations For. Ecol. Manag. 259:1771–1785. doi: 10.1016/j.foreco.2009.06.010 CrossRefGoogle Scholar
  7. 7.
    Goncalves JLM, Stape JL, Laclau JP, et al. (2008) Assessing the effects of early silvicultural management on long-term site productivity of fast-growing eucalypt plantations: the Brazilian experience South For 70:105–118. doi: 10.2989/SOUTH.FOR.2008.70.2.6.534 CrossRefGoogle Scholar
  8. 8.
    Baligar VC, Fageria NK (2015) Nutrient use efficiency in plants: an overview. In: Nutr. Use Effic. from Basics to Adv. Springer India, New Delhi, pp 1–14. doi: 10.1007/978-81-322-2169-2_1
  9. 9.
    Lima AMN, Silva IR, Neves JCL, et al. (2006) Soil organic carbon dynamics following afforestation of degraded pastures with eucalyptus in southeastern Brazil For. Ecol. Manag. 235:219–231. doi: 10.1016/j.foreco.2006.08.331 CrossRefGoogle Scholar
  10. 10.
    Fialho RC, Zinn YL (2014) Changes in soil organic carbon under eucalyptus plantations in brazil: a comparative analysis L Degrad Dev 25:428–437. doi: 10.1002/ldr.2158 CrossRefGoogle Scholar
  11. 11.
    Binkley D, Dunkin KA, DeBell D, Ryan MG (1992) Production and nutrient cycling in mixed plantations of Eucalyptus and Albizia in Hawaii For. Sci. 38:393–408Google Scholar
  12. 12.
    Balieiro FC, Franco AA, Fontes RLF, et al. (2002) Accumulation and distribution of aboveground biomass and nutrients under pure and mixed stands of Pseudosamanea guachapele Dugand and Eucalyptus grandis W. Hill ex Maiden J Plant Nutr 25:2639–2654CrossRefGoogle Scholar
  13. 13.
    Forrester DI, Cowie AL, Bauhus J, et al. (2006) Effects of changing the supply of nitrogen and phosphorus on growth and interactions between Eucalyptus globulus and Acacia mearnsiiin a pot trial Plant Soil 280:267–277. doi: 10.1007/s11104-005-3228-x CrossRefGoogle Scholar
  14. 14.
    Rachid CTCC, Balieiro FC, Peixoto RS, et al. (2013) Mixed plantations can promote microbial integration and soil nitrate increases with changes in the N cycling genes Soil Biol. Biochem. 66:146–153. doi: 10.1016/j.soilbio.2013.07.005 CrossRefGoogle Scholar
  15. 15.
    Dubilier N, McFall-Ngai M, Zhao L (2015) Microbiology: create a global microbiome effort Nature 526:631–634. doi: 10.1038/526631a CrossRefPubMedGoogle Scholar
  16. 16.
    Goodrich JK, Di Rienzi SC, Poole AC, et al. (2014) Conducting a microbiome study Cell 158:250–262. doi: 10.1016/j.cell.2014.06.037 CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Rosenberg E, Sharon G, Zilber-Rosenberg I (2009) The hologenome theory of evolution contains Lamarckian aspects within a Darwinian framework Environ. Microbiol. 11:2959–2962. doi: 10.1111/j.1462-2920.2009.01995.x CrossRefPubMedGoogle Scholar
  18. 18.
    Ryan RP, Germaine K, Franks A, et al. (2008) Bacterial endophytes: recent developments and applications FEMS Microbiol. Lett. 278:1–9. doi: 10.1111/j.1574-6968.2007.00918.x CrossRefPubMedGoogle Scholar
  19. 19.
    Hallmann J, Quadt-Hallmann A, Mahaffee WF, Kloepper JW (1997) Bacterial endophytes in agricultural crops Can. J. Microbiol. 43:895–914. doi: 10.1139/m97-131 CrossRefGoogle Scholar
  20. 20.
    Araújo WL, Maccheroni W, Aguilar-Vildoso CI, et al. (2001) Variability and interactions between endophytic bacteria and fungi isolated from leaf tissues of citrus rootstocks Can. J. Microbiol. 47:229–236. doi: 10.1139/w00-146 CrossRefPubMedGoogle Scholar
  21. 21.
    Cole JR, Wang Q, Cardenas E, et al. (2009) The Ribosomal database project: improved alignments and new tools for rRNA analysis Nucleic Acids Res. 37:141–145. doi: 10.1093/nar/gkn879 CrossRefGoogle Scholar
  22. 22.
    Schloss PD, Westcott SL, Ryabin T, et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541. doi: 10.1128/AEM.01541-09
  23. 23.
    Sul WJ, Cole JR, Jesus EDC, et al. (2011) Bacterial community comparisons by taxonomy-supervised analysis independent of sequence alignment and clustering Proc. Natl. Acad. Sci. U. S. A. 108:14637–14642. doi: 10.1073/pnas.1111435108 CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Bray JR, Curtis JT (1957) An ordination of the upland forest communities of southern Wisconsin Ecol. Monogr. 27:325–349. doi: 10.2307/1942268 CrossRefGoogle Scholar
  25. 25.
    Biondini ME, Bonham CD, Redente EF (1985) Secondary successional patterns in a sagebrush (Artemisia tridentata) community as they relate to soil disturbance and soil biological activity Vegetatio 60:25–36. doi: 10.1007/BF00053909 CrossRefGoogle Scholar
  26. 26.
    Dufrene M, Legendre P (1997) Species assemblages and indicator species: the need for a flexible asymmetrical approach Ecol. Monogr. 67:345–366. doi: 10.2307/2963459 CrossRefGoogle Scholar
  27. 27.
    Atlas RM (2005) Handbook of media for environmental microbiology, 2nd ed. CRC Press, Boca RatonGoogle Scholar
  28. 28.
    Seldin L, Van Elsas JD, Penido EGC (1984) Bacillus azotofixans sp. nov., a nitrogen-fixing species from Brazilian soils and grass roots Int. J. Syst. Bacteriol. 34:451–456. doi: 10.1099/00207713-34-4-451 CrossRefGoogle Scholar
  29. 29.
    Simonet P, Grosjean MC, Misra AK, et al. (1991) Frankia genus-specific characterization by polymerase chain reaction Appl. Environ. Microbiol. 57:3278–3286PubMedPubMedCentralGoogle Scholar
  30. 30.
    Poly F, Monrozier LJ, Bally R (2001) Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil Res. Microbiol. 152:95–103CrossRefPubMedGoogle Scholar
  31. 31.
    Lane D (1991) Nucleic acid techniques in bacterial systematics. In: Stackebrandt E, Goodfellow M (eds) 16S/23S rRNA Seq. John Wiley and Sons, New York, pp. 115–175Google Scholar
  32. 32.
    Hall T (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT Nucleic Acids Symp. Ser. 41:95–98Google Scholar
  33. 33.
    Manter DK, Delgado JA, Holm DG, Stong RA (2010) Pyrosequencing reveals a highly diverse and cultivar-specific bacterial endophyte community in potato roots Microb. Ecol.:157–166. doi: 10.1007/s00248-010-9658-x
  34. 34.
    Akinsanya MA, Goh JK, Lim SP, Ting ASY (2015) Metagenomics study of endophytic bacteria in Aloe vera using next-generation technology Genomics Data 6:159–163. doi: 10.1016/j.gdata.2015.09.004 CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Bodenhausen N, Horton MW, Bergelson J (2013) Bacterial communities associated with the leaves and the roots of Arabidopsis thaliana PLoS One 8:e56329. doi: 10.1371/journal.pone.0056329 CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Gottel NR, Castro HF, Kerley M, et al. (2011) Distinct microbial communities within the Endosphere and rhizosphere of Populus deltoides roots across contrasting soil types Appl. Environ. Microbiol. 77:5934–5944. doi: 10.1128/AEM.05255-11 CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Conn V, Franco C (2004) Endophytic actinobacterial population in the roots of wheat (Triticum aestivum L.) by terminal restriction fragment length polymorphism and sequencing of 16S rRNA Appl. Environ. Microbiol. 70:1787–1794. doi: 10.1128/AEM.70.3.1787 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Rachid CTCC, Balieiro FC, Fonseca ES, et al. (2015) Intercropped silviculture systems, a key to achieving soil fungal community management in Eucalyptus plantations PLoS One 10:e0118515. doi: 10.1371/journal.pone.0118515 CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Procópio REL, Araújo WL, Maccheroni W, Azevedo JL (2009) Characterization of an endophytic bacterial community associated with Eucalyptus spp Genet. Mol. Res. 8:1408–1422. doi: 10.4238/vol8-4gmr691 CrossRefPubMedGoogle Scholar
  40. 40.
    Miguel PSB, de Oliveira MNV, Delvaux JC, et al. (2016) Diversity and distribution of the endophytic bacterial community at different stages of Eucalyptus growth Anton Leeuw Int J Gen Mol Microbiol 109:755–771. doi: 10.1007/s10482-016-0676-7 CrossRefGoogle Scholar
  41. 41.
    Silva EV, Gonçalves JL, Coelho SR, et al. (2009) Dynamics of fine root distribution after establishment of monospecific and mixed-species plantations of Eucalyptus grandis and Acacia mangium Plant Soil 325:305–318. doi: 10.1007/s11104-009-9980-6 CrossRefGoogle Scholar
  42. 42.
    Santos FM, Chaer GM, Diniz AR, de Balieiro FC (2017) Nutrient cycling over five years of mixed-species plantations of Eucalyptus and Acacia on a sandy tropical soil For. Ecol. Manag. 384:110–121. doi: 10.1016/j.foreco.2016.10.041 CrossRefGoogle Scholar
  43. 43.
    Paula RR, Bouillet J-P, Ocheuze Trivelin PC, et al. (2015) Evidence of short-term belowground transfer of nitrogen from Acacia mangium to Eucalyptus grandis trees in a tropical planted forest Soil Biol. Biochem. 91:99–108. doi: 10.1016/j.soilbio.2015.08.017 CrossRefGoogle Scholar
  44. 44.
    Ferreira A, Quecine MC, Lacava PT, et al. (2008) Diversity of endophytic bacteria from eucalyptus species seeds and colonization of seedlings by Pantoea agglomerans FEMS Microbiol. Lett. 287:8–14. doi: 10.1111/j.1574-6968.2008.01258.x CrossRefPubMedGoogle Scholar
  45. 45.
    Silva MCS, Paula TA, Moreira BC, et al. (2014) Nitrogen-fixing bacteria in Eucalyptus globulus plantations PLoS One 9:e111313. doi: 10.1371/journal.pone.0111313 CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Boddey RM, Peoples MB, Palmer B, Dart PJ (2000) Use of the 15N natural abundance technique to quantify biological nitrogen fixation by woody perennials Nutr Cycl Agroecosyst 57:235–270. doi: 10.1023/A:1009890514844 CrossRefGoogle Scholar
  47. 47.
    Boddey RM, Polidoro JC, Resende AS, et al. (2001) Use of the 15N natural abundance technique for the quantification of the contribution of N2 fixation to sugar cane and other grasses Funct. Plant Biol. 28:889. doi: 10.1071/PP01058 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017
Corrected publication November/2017

Authors and Affiliations

  • Eduardo da Silva Fonseca
    • 1
  • Raquel Silva Peixoto
    • 2
  • Alexandre Soares Rosado
    • 2
  • Fabiano de Carvalho Balieiro
    • 3
  • James M. Tiedje
    • 4
  • Caio Tavora Coelho da Costa Rachid
    • 1
  1. 1.LABEM—Laboratory of Biotechnology and Microbial Ecology—Institute of Microbiology Paulo de GóesFederal University of Rio de JaneiroRio de JaneiroBrazil
  2. 2.LEMM—Laboratory of Microbial Molecular Ecology—Institute of Microbiology Paulo de GóesFederal University of Rio de JaneiroRio de JaneiroBrazil
  3. 3.Embrapa SolosRio de JaneiroBrazil
  4. 4.Center for Microbial EcologyMichigan State UniversityEast LansingUSA

Personalised recommendations