Advertisement

Quantification of skeletal muscle mass: sarcopenia as a marker of overall health in children and adults

  • Leah A. GilliganEmail author
  • Alexander J. Towbin
  • Jonathan R. Dillman
  • Elanchezhian Somasundaram
  • Andrew T. Trout
Review
  • 85 Downloads

Abstract

Sarcopenia is defined as the loss of muscle mass or function and has been associated with increased morbidity and mortality in a variety of diseased populations. Sarcopenia results from a higher rate of muscle protein degradation compared to protein synthesis and is an important marker of metabolic status related to nutrition and physical activity. The diagnosis of sarcopenia is accomplished by clinical assessment demonstrating decreased muscle function and radiographic confirmation of decreased muscle mass, via dual X-ray absorptiometry, bioelectric impedance or cross-sectional imaging with CT or MRI. However, normative data for skeletal muscle mass are lacking, especially for children and young adults. Additionally, studies of skeletal muscle mass by cross-sectional imaging in children are scarce. Here, we review the concept of sarcopenia with an emphasis on its relevance in the pediatric population.

Keywords

Body composition Computed tomography Imaging Magnetic resonance imaging Muscle Sarcopenia 

Notes

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Biolo G, Cederholm T, Muscaritoli M (2014) Muscle contractile and metabolic dysfunction is a common feature of sarcopenia of aging and chronic diseases: from sarcopenic obesity to cachexia. Clin Nutr 33:737–748PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Woo J (2017) Sarcopenia. Clin Geriatr Med 33:305–314PubMedCrossRefGoogle Scholar
  3. 3.
    McCarthy HD, Samani-Radia D, Jebb SA et al (2014) Skeletal muscle mass reference curves for children and adolescents. Pediatr Obes 9:249–259PubMedCrossRefPubMedCentralGoogle Scholar
  4. 4.
    Rosenberg IH (1997) Sarcopenia: origins and clinical relevance. J Nutr 127:990S–991SPubMedCrossRefGoogle Scholar
  5. 5.
    Vellas B, Fielding RA, Bens C et al (2018) Implications of ICD-10 for sarcopenia clinical practice and clinical trials: report by the international conference on frailty and sarcopenia research task force. J Frailty Aging 7:2–9PubMedGoogle Scholar
  6. 6.
    Cruz-Jentoft AJ, Baeyens JP, Bauer JM et al (2010) Sarcopenia: European consensus on definition and diagnosis: report of the European Working Group on Sarcopenia in Older People. Age Ageing 39:412–423PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Cruz-Jentoft AJ, Bahat G, Bauer J et al (2019) Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing 48:16–31PubMedCrossRefGoogle Scholar
  8. 8.
    Fuggle N, Shaw S, Dennison E et al (2017) Sarcopenia. Best Pract Res Clin Rheumatol 31:218–242PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Chen LK, Lee WJ, Peng LN et al (2016) Recent advances in sarcopenia research in Asia: 2016 update from the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 17:e761–e767CrossRefGoogle Scholar
  10. 10.
    Ibrahim K, May C, Patel HP et al (2016) A feasibility study of implementing grip strength measurement into routine hospital practice (GRImP): study protocol. Pilot Feasibility Stud 2:27PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Leong DP, Teo KK, Rangarajan S et al (2015) Prognostic value of grip strength: findings from the Prospective Urban Rural Epidemiology (PURE) study. Lancet 386:266–273PubMedCrossRefPubMedCentralGoogle Scholar
  12. 12.
    Schaap LA, Koster A, Visser M (2013) Adiposity, muscle mass, and muscle strength in relation to functional decline in older persons. Epidemiol Rev 35:51–65PubMedCrossRefPubMedCentralGoogle Scholar
  13. 13.
    Schaap LA, van Schoor NM, Lips P et al (2018) Associations of sarcopenia definitions, and their components, with the incidence of recurrent falling and fractures: the Longitudinal Aging Study. J Gerontol A Biol Sci Med Sci 73:1199–1204PubMedCrossRefPubMedCentralGoogle Scholar
  14. 14.
    Newman AB, Kupelian V, Visser M et al (2006) Strength, but not muscle mass, is associated with mortality in the health, aging and body composition study cohort. J Gerontol A Biol Sci Med Sci 61:72–77PubMedCrossRefPubMedCentralGoogle Scholar
  15. 15.
    Prado CM, Wells JC, Smith SR et al (2012) Sarcopenic obesity: a critical appraisal of the current evidence. Clin Nutr 31:583–601PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Hales CM, Carroll MD, Fryar CD et al (2017) Prevalence of obesity among adults and youth: United States, 2015-2016. NCHS Data Brief 2017:1–8Google Scholar
  17. 17.
    Kim K, Hong S, Kim EY (2016) Reference values of skeletal muscle mass for Korean children and adolescents using data from the Korean national health and nutrition examination survey 2009-2011. PLoS One 11:e0153383PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    Steffl M, Chrudimsky J, Tufano JJ (2017) Using relative handgrip strength to identify children at risk of sarcopenic obesity. PLoS One 12:e0177006PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Morley JE, Abbatecola AM, Argiles JM et al (2011) Sarcopenia with limited mobility: an international consensus. J Am Med Dir Assoc 12:403–409PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Batsis JA, Mackenzie TA, Jones JD et al (2016) Sarcopenia, sarcopenic obesity and inflammation: results from the 1999-2004 national health and nutrition examination survey. Clin Nutr 35:1472–1483PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Visser M, Deeg DJ, Lips P et al (2003) Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metab 88:5766–5772CrossRefGoogle Scholar
  22. 22.
    Fielding RA, Vellas B, Evans WJ et al (2011) Sarcopenia: an undiagnosed condition in older adults. Current consensus definition: prevalence, etiology, and consequences. International Working Group on Sarcopenia. J Am Med Dir Assoc 12:249–256PubMedCrossRefPubMedCentralGoogle Scholar
  23. 23.
    Han P, Kang L, Guo Q et al (2016) Prevalence and factors associated with sarcopenia in suburb-dwelling older Chinese using the Asian Working Group for Sarcopenia definition. J Gerontol A Biol Sci Med Sci 71:529–535PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Moreira VG, Perez M, Lourenco RA (2019) Prevalence of sarcopenia and its associated factors: the impact of muscle mass, gait speed, and handgrip strength reference values on reported frequencies. Clinics 74:e477PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Cruz-Jentoft AJ, Landi F, Schneider SM et al (2014) Prevalence of and interventions for sarcopenia in ageing adults: a systematic review. Report of the international sarcopenia initiative (EWGSOP and IWGS). Age Ageing 43:748–759PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Baumgartner RN, Koehler KM, Gallagher D et al (1998) Epidemiology of sarcopenia among the elderly in New Mexico. Am J Epidemiol 147:755–763PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Chen LK, Liu LK, Woo J et al (2014) Sarcopenia in Asia: consensus report of the Asian Working Group for Sarcopenia. J Am Med Dir Assoc 15:95–101CrossRefGoogle Scholar
  28. 28.
    Studenski SA, Peters KW, Alley DE et al (2014) The FNIH sarcopenia project: rationale, study description, conference recommendations, and final estimates. J Gerontol A Biol Sci Med Sci 69:547–558PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Keller K (2019) Sarcopenia. Wien Med Wochenschr 169:157–172PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Mangus RS, Bush WJ, Miller C et al (2017) Severe sarcopenia and increased fat stores in pediatric patients with liver, kidney, or intestine failure. J Pediatr Gastroenterol Nutr 65:579–583PubMedCrossRefGoogle Scholar
  31. 31.
    Lurz E, Patel H, Frimpong RG et al (2018) Sarcopenia in children with end-stage liver disease. J Pediatr Gastroenterol Nutr 66:222–226PubMedCrossRefGoogle Scholar
  32. 32.
    Hanna JS (2015) Sarcopenia and critical illness: a deadly combination in the elderly. JPEN J Parenter Enteral Nutr 39:273–281PubMedCrossRefGoogle Scholar
  33. 33.
    Levolger S, van Vledder MG, Muslem R et al (2015) Sarcopenia impairs survival in patients with potentially curable hepatocellular carcinoma. J Surg Oncol 112:208–213PubMedCrossRefGoogle Scholar
  34. 34.
    Nakamura N, Hara T, Shibata Y et al (2015) Sarcopenia is an independent prognostic factor in male patients with diffuse large B-cell lymphoma. Ann Hematol 94:2043–2053PubMedCrossRefGoogle Scholar
  35. 35.
    Hida T, Shimokata H, Sakai Y et al (2016) Sarcopenia and sarcopenic leg as potential risk factors for acute osteoporotic vertebral fracture among older women. Eur Spine J 25:3424–3431PubMedCrossRefGoogle Scholar
  36. 36.
    Greenlund LJ, Nair KS (2003) Sarcopenia — consequences, mechanisms, and potential therapies. Mech Ageing Dev 124:287–299PubMedCrossRefPubMedCentralGoogle Scholar
  37. 37.
    Al Snih S, Markides KS, Ottenbacher KJ et al (2004) Hand grip strength and incident ADL disability in elderly Mexican Americans over a seven-year period. Aging Clin Exp Res 16:481–486PubMedCrossRefGoogle Scholar
  38. 38.
    Janssen I (2006) Influence of sarcopenia on the development of physical disability: the cardiovascular health study. J Am Geriatr Soc 54:56–62PubMedCrossRefGoogle Scholar
  39. 39.
    Landi F, Liperoti R, Russo A et al (2012) Sarcopenia as a risk factor for falls in elderly individuals: results from the ilSIRENTE study. Clin Nutr 31:652–658PubMedCrossRefGoogle Scholar
  40. 40.
    Malmstrom TK, Miller DK, Simonsick EM et al (2016) SARC-F: a symptom score to predict persons with sarcopenia at risk for poor functional outcomes. J Cachexia Sarcopenia Muscle 7:28–36PubMedCrossRefPubMedCentralGoogle Scholar
  41. 41.
    Antunes AC, Araujo DA, Verissimo MT et al (2017) Sarcopenia and hospitalisation costs in older adults: a cross-sectional study. Nutr Diet 74:46–50PubMedCrossRefPubMedCentralGoogle Scholar
  42. 42.
    Bone AE, Hepgul N, Kon S et al (2017) Sarcopenia and frailty in chronic respiratory disease. Chron Respir Dis 14:85–99PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Chang KV, Hsu TH, Wu WT et al (2016) Association between sarcopenia and cognitive impairment: a systematic review and meta-analysis. J Am Med Dir Assoc 17:1164.e7–1164e15PubMedCrossRefGoogle Scholar
  44. 44.
    De Buyser SL, Petrovic M, Taes YE et al (2016) Validation of the FNIH sarcopenia criteria and SOF frailty index as predictors of long-term mortality in ambulatory older men. Age Ageing 45:602–608PubMedCrossRefGoogle Scholar
  45. 45.
    Cosqueric G, Sebag A, Ducolombier C et al (2006) Sarcopenia is predictive of nosocomial infection in care of the elderly. Br J Nutr 96:895–901PubMedCrossRefGoogle Scholar
  46. 46.
    Janssen I, Shepard DS, Katzmarzyk PT et al (2004) The healthcare costs of sarcopenia in the United States. J Am Geriatr Soc 52:80–85PubMedCrossRefPubMedCentralGoogle Scholar
  47. 47.
    Evans WJ (2010) Skeletal muscle loss: cachexia, sarcopenia, and inactivity. Am J Clin Nutr 91:1123S–1127SPubMedCrossRefGoogle Scholar
  48. 48.
    Schols AM, Broekhuizen R, Weling-Scheepers CA et al (2005) Body composition and mortality in chronic obstructive pulmonary disease. Am J Clin Nutr 82:53–59PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Reinders I, Murphy RA, Brouwer IA et al (2016) Muscle quality and myosteatosis: novel associations with mortality risk: the Age, Gene/Environment Susceptibility (AGES)-Reykjavik Study. Am J Epidemiol 183:53–60PubMedCrossRefGoogle Scholar
  50. 50.
    Morley JE, Argiles JM, Evans WJ et al (2010) Nutritional recommendations for the management of sarcopenia. J Am Med Dir Assoc 11:391–396PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Trabal J, Forga M, Leyes P et al (2015) Effects of free leucine supplementation and resistance training on muscle strength and functional status in older adults: a randomized controlled trial. Clin Interv Aging 10:713–723PubMedPubMedCentralCrossRefGoogle Scholar
  52. 52.
    Marty E, Liu Y, Samuel A et al (2017) A review of sarcopenia: enhancing awareness of an increasingly prevalent disease. Bone 105:276–286PubMedCrossRefPubMedCentralGoogle Scholar
  53. 53.
    Abiri B, Vafa M (2019) Nutrition and sarcopenia: a review of the evidence of nutritional influences. Crit Rev Food Sci Nutr 59:1456–1466PubMedCrossRefPubMedCentralGoogle Scholar
  54. 54.
    Beaudart C, Dawson A, Shaw SC et al (2017) Nutrition and physical activity in the prevention and treatment of sarcopenia: systematic review. Osteoporos Int 28:1817–1833PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Lee K, Shin Y, Huh J et al (2019) Recent issues on body composition imaging for sarcopenia evaluation. Korean J Radiol 20:205–217PubMedCrossRefPubMedCentralGoogle Scholar
  56. 56.
    Buckinx F, Landi F, Cesari M et al (2018) Pitfalls in the measurement of muscle mass: a need for a reference standard. J Cachexia Sarcopenia Muscle 9:269–278PubMedPubMedCentralCrossRefGoogle Scholar
  57. 57.
    Rossi AP, Fantin F, Micciolo R et al (2014) Identifying sarcopenia in acute care setting patients. J Am Med Dir Assoc 15:303.e7–303.12CrossRefGoogle Scholar
  58. 58.
    Mourtzakis M, Prado CM, Lieffers JR et al (2008) A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab 33:997–1006PubMedCrossRefPubMedCentralGoogle Scholar
  59. 59.
    Nijholt W, Scafoglieri A, Jager-Wittenaar H et al (2017) The reliability and validity of ultrasound to quantify muscles in older adults: a systematic review. J Cachexia Sarcopenia Muscle 8:702–712PubMedPubMedCentralCrossRefGoogle Scholar
  60. 60.
    Mueller N, Murthy S, Tainter CR et al (2016) Can sarcopenia quantified by ultrasound of the rectus femoris muscle predict adverse outcome of surgical intensive care unit patients as well as frailty? A prospective, observational cohort study. Ann Surg 264:1116–1124PubMedPubMedCentralCrossRefGoogle Scholar
  61. 61.
    Ticinesi A, Meschi T, Narici MV et al (2017) Muscle ultrasound and sarcopenia in older individuals: a clinical perspective. J Am Med Dir Assoc 18:290–300PubMedCrossRefPubMedCentralGoogle Scholar
  62. 62.
    Seabolt LA, Welch EB, Silver HJ (2015) Imaging methods for analyzing body composition in human obesity and cardiometabolic disease. Ann N Y Acad Sci 1353:41–59PubMedCrossRefPubMedCentralGoogle Scholar
  63. 63.
    Prado CM, Lieffers JR, McCargar LJ et al (2008) Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol 9:629–635PubMedCrossRefPubMedCentralGoogle Scholar
  64. 64.
    Derstine BA, Holcombe SA, Ross BE et al (2018) Skeletal muscle cutoff values for sarcopenia diagnosis using T10 to L5 measurements in a healthy US population. Sci Rep 8:11369PubMedPubMedCentralCrossRefGoogle Scholar
  65. 65.
    Schweitzer L, Geisler C, Pourhassan M et al (2015) What is the best reference site for a single MRI slice to assess whole-body skeletal muscle and adipose tissue volumes in healthy adults? Am J Clin Nutr 102:58–65PubMedCrossRefPubMedCentralGoogle Scholar
  66. 66.
    Khan AI, Reiter DA, Sekhar A et al (2019) MRI quantitation of abdominal skeletal muscle correlates with CT-based analysis: implications for sarcopenia measurement. Appl Physiol Nutr Metab 44:814–819PubMedCrossRefPubMedCentralGoogle Scholar
  67. 67.
    Maden-Wilkinson TM, Degens H, Jones DA et al (2013) Comparison of MRI and DXA to measure muscle size and age-related atrophy in thigh muscles. J Musculoskelet Neuronal Interact 13:320–328PubMedPubMedCentralGoogle Scholar
  68. 68.
    Mitsiopoulos N, Baumgartner RN, Heymsfield SB et al (1998) Cadaver validation of skeletal muscle measurement by magnetic resonance imaging and computerized tomography. J Appl Physiol 85:115–122PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    Derstine BA, Holcombe SA, Goulson RL et al (2017) Quantifying sarcopenia reference values using lumbar and thoracic muscle areas in a healthy population. J Nutr Health Aging 21:180–185PubMedCrossRefPubMedCentralGoogle Scholar
  70. 70.
    Gu DH, Kim MY, Seo YS et al (2018) Clinical usefulness of psoas muscle thickness for the diagnosis of sarcopenia in patients with liver cirrhosis. Clin Mol Hepatol 24:319–330PubMedPubMedCentralCrossRefGoogle Scholar
  71. 71.
    Hanaoka M, Yasuno M, Ishiguro M et al (2017) Morphologic change of the psoas muscle as a surrogate marker of sarcopenia and predictor of complications after colorectal cancer surgery. Int J Color Dis 32:847–856CrossRefGoogle Scholar
  72. 72.
    Rutten IJG, Ubachs J, Kruitwagen R et al (2017) Psoas muscle area is not representative of total skeletal muscle area in the assessment of sarcopenia in ovarian cancer. J Cachexia Sarcopenia Muscle 8:630–638PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Hamaguchi Y, Kaido T, Okumura S et al (2017) Impact of skeletal muscle mass index, intramuscular adipose tissue content, and visceral to subcutaneous adipose tissue area ratio on early mortality of living donor liver transplantation. Transplantation 101:565–574PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    van der Werf A, Langius JAE, de van der Schueren MAE et al (2018) Percentiles for skeletal muscle index, area and radiation attenuation based on computed tomography imaging in a healthy Caucasian population. Eur J Clin Nutr 72:288–296Google Scholar
  75. 75.
    Grimm A, Meyer H, Nickel MD et al (2018) Evaluation of 2-point, 3-point, and 6-point Dixon magnetic resonance imaging with flexible echo timing for muscle fat quantification. Eur J Radiol 103:57–64PubMedCrossRefPubMedCentralGoogle Scholar
  76. 76.
    Ruan XY, Gallagher D, Harris T et al (2007) Estimating whole body intermuscular adipose tissue from single cross-sectional magnetic resonance images. J Appl Physiol 102:748–754PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Gloor M, Fasler S, Fischmann A et al (2011) Quantification of fat infiltration in oculopharyngeal muscular dystrophy: comparison of three MR imaging methods. J Magn Reson Imaging 33:203–210PubMedCrossRefPubMedCentralGoogle Scholar
  78. 78.
    Gomez-Perez SL, Haus JM, Sheean P et al (2016) Measuring abdominal circumference and skeletal muscle from a single cross-sectional computed tomography image: a step-by-step guide for clinicians using National Institutes of Health ImageJ. JPEN J Parenter Enteral Nutr 40:308–318PubMedCrossRefPubMedCentralGoogle Scholar
  79. 79.
    van Vugt JL, Levolger S, Gharbharan A et al (2017) A comparative study of software programmes for cross-sectional skeletal muscle and adipose tissue measurements on abdominal computed tomography scans of rectal cancer patients. J Cachexia Sarcopenia Muscle 8:285–297PubMedCrossRefPubMedCentralGoogle Scholar
  80. 80.
    Orgiu S, Lafortuna CL, Rastelli F et al (2016) Automatic muscle and fat segmentation in the thigh from T1-weighted MRI. J Magn Reson Imaging 43:601–610PubMedCrossRefPubMedCentralGoogle Scholar
  81. 81.
    Lee H, Troschel FM, Tajmir S et al (2017) Pixel-level deep segmentation: artificial intelligence quantifies muscle on computed tomography for body morphometric analysis. J Digit Imaging 30:487–498PubMedPubMedCentralCrossRefGoogle Scholar
  82. 82.
    Hashimoto F, Kakimoto A, Ota N et al (2019) Automated segmentation of 2D low-dose CT images of the psoas-major muscle using deep convolutional neural networks. Radiol Phys Technol 12:210–215PubMedCrossRefPubMedCentralGoogle Scholar
  83. 83.
    Weston AD, Korfiatis P, Kline TL et al (2019) Automated abdominal segmentation of CT scans for body composition analysis using deep learning. Radiology 290:669–679PubMedCrossRefPubMedCentralGoogle Scholar
  84. 84.
    Belharbi S, Chatelain C, Herault R et al (2017) Spotting L3 slice in CT scans using deep convolutional network and transfer learning. Comput Biol Med 87:95–103PubMedCrossRefPubMedCentralGoogle Scholar
  85. 85.
    Guo B, Wu Q, Gong J et al (2016) Relationships between the lean mass index and bone mass and reference values of muscular status in healthy Chinese children and adolescents. J Bone Miner Metab 34:703–713PubMedCrossRefPubMedCentralGoogle Scholar
  86. 86.
    Schmidt SC, Bosy-Westphal A, Niessner C, Woll A (2018) Representative body composition percentiles from bioelectrical impedance analyses among children and adolescents. The MoMo Study. Clin Nutr.  https://doi.org/10.1016/j.clnu.2018.11.026 PubMedCrossRefPubMedCentralGoogle Scholar
  87. 87.
    Webber CE, Barr RD (2012) Age- and gender-dependent values of skeletal muscle mass in healthy children and adolescents. J Cachexia Sarcopenia Muscle 3:25–29PubMedCrossRefPubMedCentralGoogle Scholar
  88. 88.
    Been E, Shefi S, Kalichman L et al (2018) Cross-sectional area of lumbar spinal muscles and vertebral endplates: a secondary analysis of 91 computed tomography images of children aged 2-20. J Anat.  https://doi.org/10.1111/joa.12838 CrossRefGoogle Scholar
  89. 89.
    Dedhia PH, White Y, Dillman JR et al (2018) Reduced paraspinous muscle area is associated with post-colectomy complications in children with ulcerative colitis. J Pediatr Surg 53:477–482PubMedCrossRefPubMedCentralGoogle Scholar
  90. 90.
    Kawakubo N, Kinoshita Y, Souzaki R et al (2019) The influence of sarcopenia on high-risk neuroblastoma. J Surg Res 236:101–105PubMedCrossRefPubMedCentralGoogle Scholar
  91. 91.
    Lopez JJ, Cooper JN, Albert B et al (2017) Sarcopenia in children with perforated appendicitis. J Surg Res 220:1–5PubMedCrossRefPubMedCentralGoogle Scholar
  92. 92.
    Suzuki D, Kobayashi R, Sano H et al (2018) Sarcopenia after induction therapy in childhood acute lymphoblastic leukemia: its clinical significance. Int J Hematol 107:486–489PubMedCrossRefPubMedCentralGoogle Scholar
  93. 93.
    Wei C, Thyagiarajan MS, Hunt LP et al (2015) Reduced insulin sensitivity in childhood survivors of haematopoietic stem cell transplantation is associated with lipodystropic and sarcopenic phenotypes. Pediatr Blood Cancer 62:1992–1999PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Radiology, MLC 5031Cincinnati Children’s Hospital Medical CenterCincinnatiUSA
  2. 2.Department of RadiologyUniversity of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations