Advertisement

European Society of Paediatric Radiology abdominal imaging task force: recommendations for contrast-enhanced ultrasound and diffusion-weighted imaging in focal renal lesions in children

  • M. Beatrice DamasioEmail author
  • Lil-Sofie Ording Müller
  • Thomas A. Augdal
  • Fred E. Avni
  • Luca Basso
  • Costanza Bruno
  • Damjana Ključevšek
  • Annemieke S. Littooij
  • Stéphanie Franchi-Abella
  • Luisa M. Lobo
  • Hans-Joachim Mentzel
  • Marcello Napolitano
  • Aikaterini Ntoulia
  • Michael Riccabona
  • Samuel Stafrace
  • M. Magdalena M. Woźniak
  • Philippe Petit
ESPR
  • 47 Downloads

Abstract

Contrast-enhanced ultrasound (CEUS) and diffusion-weighted imaging (DWI) are safe, repeatable imaging techniques. The aim of this paper is to discuss the advantages, technical factors and possible clinical applications of these imaging tools in focal renal lesions in children.

Keywords

Children Contrast-enhanced ultrasound Diffusion-weighted imaging Kidney Magnetic resonance imaging Recommendations Tumour Ultrasound 

Notes

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Rosado E, Riccabona M (2016) Off-label use of ultrasound contrast agents for intravenous applications in children: analysis of the existing literature. J Ultrasound Med 35:487–496CrossRefGoogle Scholar
  2. 2.
    Darge K, Papadopoulou F, Ntoulia A et al (2013) Safety of contrast-enhanced ultrasound in children for non-cardiac applications: a review by the Society for Pediatric Radiology (SPR) and the international contrast ultrasound society (ICUS). Pediatr Radiol 43:1063–1073CrossRefGoogle Scholar
  3. 3.
    Piskunowicz M, Kosiak W, Batko T et al (2015) Safety of intravenous application of second-generation ultrasound contrast agent in children: prospective analysis. Ultrasound Med Biol 41:1095–1099CrossRefGoogle Scholar
  4. 4.
    Riccabona M (2012) Application of a second-generation US contrast agent in infants and children - a European questionnaire-based survey. Pediatr Radiol 42:1471–1480CrossRefGoogle Scholar
  5. 5.
    Riccabona M, Avni FE, Damasio MB et al (2012) ESPR uroradiology task force and ESUR paediatric working group--imaging recommendations in paediatric uroradiology, part V: childhood cystic kidney disease, childhood renal transplantation and contrast-enhanced ultrasonography in children. Pediatr Radiol 42:1275–1283CrossRefGoogle Scholar
  6. 6.
    Sidhu PS, Cantisani V, Deganello A et al (2017) Role of contrast-enhanced ultrasound (CEUS) in Paediatric practice: an EFSUMB position statement. Ultraschall Med 38:33–43PubMedGoogle Scholar
  7. 7.
    Ntoulia A, Anupindi SA, Darge K, Back SJ (2018) Applications of contrast-enhanced ultrasound in the pediatric abdomen. Abdom Radiol 43:948–959CrossRefGoogle Scholar
  8. 8.
    Stenzel M, Mentzel HJ (2014) Ultrasound elastography and contrast-enhanced ultrasound in infants, children, and adolescents. Eur J Radiol 83:1560–1569CrossRefGoogle Scholar
  9. 9.
    Knieling F, Strobel D, Rompel O et al (2016) Spectrum, applicability and diagnostic capacity of contrast-enhanced ultrasound in pediatric patients and young adults after intravenous application – a retrospective trail. Ultraschall Med 37:619–626CrossRefGoogle Scholar
  10. 10.
    Piscaglia F, Nolsøe C, Dietrich CF et al (2012) The EFSUMB guidelines and recommendations on the clinical practice of contrast enhanced ultrasound (CEUS): update 2011 on non-hepatic applications. Ultraschall Med 33:33–59CrossRefGoogle Scholar
  11. 11.
    Harvey CJ, Sidhu PS, Bachmann Nielsen M (2013) Contrast-enhanced ultrasound in renal transplants: applications and future directions. Ultraschall Med 34:319–321CrossRefGoogle Scholar
  12. 12.
    Stein R, Dogan HS, Hoebeke P et al (2015) Urinary tract infections in children: EAU/ESPU guidelines. Eur Urol 67:546–558CrossRefGoogle Scholar
  13. 13.
    Granata A, Floccari F, Insalaco M et al (2012) Ultrasound assessment in renal infections. G Ital Nefrol 29 Suppl 5:S47–S57Google Scholar
  14. 14.
    Yusuf GT, Sellars ME, Huang DY et al (2014) Cortical necrosis secondary to trauma in a child: contrast-enhanced ultrasound comparable to magnetic resonance imaging. Pediatr Radiol 44:484–487CrossRefGoogle Scholar
  15. 15.
    Fontanilla T, Minaya J, Cortès C et al (2012) Acute complicated pyelonephritis: contrast-enhanced ultrasound. Abdom Imaging 37:639–646CrossRefGoogle Scholar
  16. 16.
    Hains DS, Cohen HL, McCarville MB et al (2017) Elucidation of renal scars in children with vesicoureteral reflux using contrast-enhanced ultrasound: a pilot study. Kidney Int Rep 2:420–424CrossRefGoogle Scholar
  17. 17.
    Karmazyn B, Tawadros A, Delaney LR et al (2015) Ultrasound classification of solitary renal cysts in children. J Pediatr Urol 11:149.e1–149.e6CrossRefGoogle Scholar
  18. 18.
    Clevert DA, Minaifar N, Weckbach S et al (2008) Multislice computed tomography versus contrast-enhanced ultrasound in evaluation of complex cystic renal masses using the Bosniak classification system. Clin Hemorheol Microcirc 39:171–178Google Scholar
  19. 19.
    Oon SF, Foley RW, Quinn D et al (2018) Contrast-enhanced ultrasound of the kidney: a single-institution experience. Ir J Med Sci 187:795–802CrossRefGoogle Scholar
  20. 20.
    Catalano O, Aiani L, Barozzi L et al (2009) CEUS in abdominal trauma: multi-center study. Abdom Imaging 34:225–234CrossRefGoogle Scholar
  21. 21.
    Anuponidi SA, Biko DM, Ntoulia A et al (2017) Contrast-enhanced US assessment of focal liver lesions in children. Radiographics 37:1632–1647CrossRefGoogle Scholar
  22. 22.
    Amerstorfer EE, Haberlik A, Riccabona M (2015) Imaging assessment of renal injuries in children and adolescents: CT or ultrasound? J Pediatr Surg 50:448–455CrossRefGoogle Scholar
  23. 23.
    Sessa B, Trinci M, Ianniello S et al (2015) Blunt abdominal trauma: role of contrast-enhanced ultrasound (CEUS) in the detection and staging of abdominal traumatic lesions compared to US and CE-MDCT. Radiol Med 120:180–189CrossRefGoogle Scholar
  24. 24.
    Miele V, Piccolo CL, Galluzzo M et al (2016) Contrast-enhanced ultrasound (CEUS) in blunt abdominal trauma. Br J Radiol 89:20150823CrossRefGoogle Scholar
  25. 25.
    Armstrong LB, Mooney DP, Paltiel H et al (2018) Contrast enhanced ultrasound for the evaluation of blunt pediatric abdominal trauma. J Pediatr Surg 53:548–552CrossRefGoogle Scholar
  26. 26.
    Streck CJ Jr, Jewett BM, Wahlquist AH et al (2012) Evaluation for intra-abdominal injury in children after blunt torso trauma: can we reduce unnecessary abdominal computed tomography by utilizing a clinical prediction model? J Trauma Acute Care Surg 73:371–376CrossRefGoogle Scholar
  27. 27.
    Cokkinos D, Antypa E, Stefanidis K et al (2012) Contrast-enhanced ultrasound for imaging blunt abdominal trauma - indications, description of the technique and imaging review. Ultraschall Med 33:60–67CrossRefGoogle Scholar
  28. 28.
    Miele V, Piccolo CL, Trinci M et al (2016) Diagnostic imaging of blunt abdominal trauma in pediatric patients. Radiol Med 121:409–430CrossRefGoogle Scholar
  29. 29.
    Lim HK, Kim JK, Kim KA, Cho KS (2009) Prostate cancer: apparent diffusion coefficient map with T2-weighted images for detection -- a multireader study. Radiology 250:145–151CrossRefGoogle Scholar
  30. 30.
    Parikh T, Drew SJ, Lee VS et al (2008) Focal liver lesion detection and characterization with diffusion-weighted MR imaging: comparison with standard breath-hold T2-weighted imaging. Radiology 246:812–822CrossRefGoogle Scholar
  31. 31.
    Ei Khouli RH, Jacobs MA, Mezban SD et al (2010) Diffusion-weighted imaging improves the diagnostic accuracy of conventional 3.0-T breast MR imaging. Radiology 256:64–73CrossRefGoogle Scholar
  32. 32.
    Mytsyk Y, Dutka I, Borys Y et al (2017) Renal cell carcinoma: applicability of the apparent coefficient of the diffusion-weighted estimated by MRI for improving their differential diagnosis, histologic subtyping, and differentiation grade. Int Urol Nephrol 49:215–224CrossRefGoogle Scholar
  33. 33.
    Prasad SR, Humphrey PA, Catena JR et al (2006) Common and uncommon histologic subtypes of renal cell carcinoma: imaging spectrum with pathologic correlation. Radiographics 26:1795–1806CrossRefGoogle Scholar
  34. 34.
    Lair M, Renaux-Petel M, Hassani A et al (2018) Diffusion tensor imaging in acute pyelonephritis in children. Pediatr Radiol 48:1081–1085CrossRefGoogle Scholar
  35. 35.
    Vivier PH, Sallem A, Beurdeley M et al (2014) MRI and suspected acute pyelonephritis in children: comparison of diffusion-weighted imaging with gadolinium-enhanced T1-weighted imaging. Eur Radiol 24:19–25CrossRefGoogle Scholar
  36. 36.
    Bosakova A, Salounova D, Havelka J et al (2018) Diffusion-weighted magnetic resonance imaging is more sensitive than dimercaptosuccinic acid scintigraphy in detecting parenchymal lesions in children with acute pyelonephritis: a prospective study. J Pediatr Urol 14:269.e1–269.e7CrossRefGoogle Scholar
  37. 37.
    Littooij AS, Nikkels PG, Hulsbergen-van de Kaa CA et al (2017) Apparent diffusion coefficient as it relates to histopathology findings in post-chemotherapy nephroblastoma: a feasibility study. Pediatr Radiol 47:1608–1614CrossRefGoogle Scholar
  38. 38.
    Littooij AS, Humphries PD, Olsen ØE (2015) Intra- and interobserver variability of whole-tumour apparent diffusion coefficient measurements in nephroblastoma: a pilot study. Pediatr Radiol 45:1651–1660CrossRefGoogle Scholar
  39. 39.
    Littooij AS, Sebire NJ, Olsen ØE (2017) Whole-tumor ADC measurements in nephroblastoma: can it identify blastemal predominance? J Magn Reson Imaging 45:1316–1324CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • M. Beatrice Damasio
    • 1
    Email author
  • Lil-Sofie Ording Müller
    • 2
  • Thomas A. Augdal
    • 3
  • Fred E. Avni
    • 4
  • Luca Basso
    • 1
  • Costanza Bruno
    • 5
  • Damjana Ključevšek
    • 6
  • Annemieke S. Littooij
    • 7
    • 8
  • Stéphanie Franchi-Abella
    • 9
  • Luisa M. Lobo
    • 10
  • Hans-Joachim Mentzel
    • 11
  • Marcello Napolitano
    • 12
  • Aikaterini Ntoulia
    • 13
  • Michael Riccabona
    • 14
  • Samuel Stafrace
    • 15
  • M. Magdalena M. Woźniak
    • 16
  • Philippe Petit
    • 17
  1. 1.Department of Radiology, IRCCSIstituto Giannina GasliniGenovaItaly
  2. 2.Division of Radiology and Nuclear Medicine, Department of Paediatric RadiologyOslo University Hospital, RikshospitaletOsloNorway
  3. 3.Department of RadiologyUniversity Hospital of North NorwayTromsøNorway
  4. 4.Department of Pediatric RadiologyJeanne de Flandre Hospital, CHRU de LilleLilleFrance
  5. 5.Radiology Institute, Department of RadiologyAOUIVeronaItaly
  6. 6.Department of RadiologyUniversity Children’s HospitalLjubljanaSlovenia
  7. 7.Department of RadiologyPrincess Maxima Center for Pediatric OncologyUtrechtThe Netherlands
  8. 8.Department of RadiologyUniversity Medical CenterUtrechtthe Netherlands
  9. 9.Service de RadiopédiatrieHôpital Bicêtre - Hôpitaux Universitaires Paris-SudParisFrance
  10. 10.Serviço de Imagiologia GeralCentro Hospitalar Universitário Lisboa Norte (CHULN)LisbonPortugal
  11. 11.Section of Pediatric Radiology, Institute of Diagnostic and Interventional RadiologyUniversity Hospital JenaJenaGermany
  12. 12.Department of Paediatric Radiology and NeuroradiologyV. Buzzi Children’s HospitalMilanItaly
  13. 13.Department of RadiologyPoole Hospital NHS Foundation TrustPooleUK
  14. 14.Department of Radiology, Division of Pediatric RadiologyUniversity Hospital and Medical UniversityGrazAustria
  15. 15.Department of Diagnostic ImagingSidra MedicineDohaQatar
  16. 16.Department of Pediatric RadiologyMedical University of LublinLublinPoland
  17. 17.Service d’Imagerie Pédiatrique et PrénataleHôpital Timone EnfantsMarseilleFrance

Personalised recommendations