A multifactorial severity score for left congenital diaphragmatic hernia in a high-risk population using fetal magnetic resonance imaging

  • Brandon P. BrownEmail author
  • Michael T. Clark
  • Rachel L. Wise
  • Lava R. Timsina
  • Thomas A. Reher
  • Robert J. Vandewalle
  • Joshua J. Brown
  • Zoe M. Saenz
  • Brian W. Gray
Original Article



Adverse outcomes for infants born with left congenital diaphragmatic hernia (CDH) have been correlated with fetal imaging findings.


We sought to corroborate these correlations in a high-risk cohort and describe a predictive mortality algorithm combining multiple imaging biomarkers for use in prenatal counseling.

Materials and methods

We reviewed fetal MRI examinations at our institution from 2004 to 2016 demonstrating left-side CDH. MRI findings, hospital course and outcomes were recorded and analyzed using bivariate and multivariable analysis. We generated a receiver operating curve (ROC) to determine a cut-off relation for mortality. Finally, we created a predictive mortality calculator.


Of 41 fetuses included in this high-risk cohort, 41% survived. Per bivariate analysis, observed-to-expected total fetal lung volume (P=0.007), intrathoracic position of the stomach (P=0.049), and extracorporeal membrane oxygenation (ECMO) requirement (P<0.001) were significantly associated with infant mortality. Youden J statistic optimized the ROC for mortality at 24% observed-to-expected total fetal lung volume (sensitivity 64%, specificity 82%, area under the curve 0.72). On multivariable analysis, observed-to-expected total fetal lung volume ± 24% was predictive of mortality (adjusted odds ratio, 95% confidence interval: 0.09 [0.02, 0.55]; P=0.008). We derived a novel mortality prediction calculator from this analysis.


In this high-risk cohort, decreased observed-to-expected total fetal lung volume and stomach herniation were significantly associated with mortality. The novel predictive mortality calculator utilizes information from fetal MR imaging and provides prognostic information for health care providers. Creation of similar predictive tools by other institutions, using their distinct populations, might prove useful in family counseling, especially where there are discordant imaging findings.


Congenital diaphragmatic hernia Fetus Magnetic resonance imaging Neonate Perinatal outcome Predictive mortality model 


Compliance with ethical standards

Conflicts of interest



  1. 1.
    Langham M, Kays D, Ledbetter D et al (1996) Congenital diaphragmatic hernia: epidemiology and outcome. Clin Perinatol 23:671–687CrossRefGoogle Scholar
  2. 2.
    Dingeldein M (2018) Congenital diaphragmatic hernia: management & outcomes. Adv Pediatr Infect Dis 65:241–247Google Scholar
  3. 3.
    Oliver ER, DeBari SE, Adams SE et al (2019) Congenital diaphragmatic hernia sacs: prenatal imaging and associated postnatal outcomes. Pediatr Radiol 11:1–7Google Scholar
  4. 4.
    Pugliandla PS, Grabowski J, Austin M et al (2015) Management of congenital diaphragmatic hernia: a systemic review from the APSA outcomes and evidence based practice committee. J Pediatr Surg 50:1958–1970CrossRefGoogle Scholar
  5. 5.
    Snoek KG, Reiss IK, Greenough A et al (2016) Standardized postnatal management of infants with congenital diaphragmatic hernia in Europe: the CDH EURO consortium consensus — 2015 update. Neonatology 110:66–74CrossRefGoogle Scholar
  6. 6.
    Snoek KG, Capolupo I, van Rosmalen J et al (2016) Conventional mechanical ventilation versus high-frequency oscillatory ventilation for congenital diaphragmatic hernia: a randomized clinical trial (the VICI-trial). Ann Surg 263:867–874CrossRefGoogle Scholar
  7. 7.
    Abman SH, Hansmann G, Archer SL et al (2015) Pediatric pulmonary hypertension: guidelines from the American Heart Association and American Thoracic Society. Circulation 132:2037–2099CrossRefGoogle Scholar
  8. 8.
    Roberts JD, Fineman JR, Morin FC et al (1997) Inhaled nitric oxide and persistent pulmonary hypertension of the newborn. The Inhaled Nitric Oxide Study Group. N Engl J Med 336:605–610CrossRefGoogle Scholar
  9. 9.
    Bialkowski A, Moenkenmeyer F, Patel N (2015) Intravenous sildenafil in the management of pulmonary hypertension associated with congenital diaphragmatic hernia. Eur J Pediatr Surg 25:171–176CrossRefGoogle Scholar
  10. 10.
    Lakshminrusimha S, Steinhorn RH (2013) Inodilators in nitric oxide resistant persistent pulmonary hypertension of the newborn. Pediatr Crit Care Med 14:107–109CrossRefGoogle Scholar
  11. 11.
    Canadian Congenital Diaphragmatic Hernia Collaborative, Puligandla PS, Skarsgard ED et al (2018) Diagnosis and management of congenital diaphragmatic hernia: a clinical practice guideline. CMAJ 190:103–112CrossRefGoogle Scholar
  12. 12.
    Bereford MS, Shaw NJ (2000) Outcome of congenital diaphragmatic hernia. Pediatr Pulmonol 30:249–256CrossRefGoogle Scholar
  13. 13.
    Mah VK, Zamakshary M, Mah DY et al (2009) Absolute vs relative improvements in congenital diaphragmatic hernia survival: what happened to “hidden mortality.” J Pediatr Surg 44:877–882Google Scholar
  14. 14.
    Brownlee EM, Howatson AG, Davis CF, Sabharwal AJ (2009) The hidden mortality of congenital diaphragmatic hernia: a 20-year review. J Pediatr Surg 44:317–320CrossRefGoogle Scholar
  15. 15.
    Peralta CFA, Cavoretto P, Csapo B et al (2005) Assessment of lung area in normal fetuses at 12–32 weeks. Ultrasound Obstet Gynecol 26:718–724CrossRefGoogle Scholar
  16. 16.
    Jani J, Keller RL, Benacji A et al (2006) Prenatal prediction of survival in isolated left-sided diaphragmatic hernia. Ultrasound Obstet Gynecol 27:18–22CrossRefGoogle Scholar
  17. 17.
    Jani J, Nicolaides KH, Keller RL et al (2007) Observed to expected lung area to head circumference ratio in the prediction of survival in fetuses with isolated diaphragmatic hernia. Ultrasound Obstet Gynecol 32:793–799CrossRefGoogle Scholar
  18. 18.
    Jani J, Cannie M, Sonigo P et al (2008) Value of prenatal magnetic resonance imaging in the prediction of postnatal outcome in fetuses with diaphragmatic hernia. Ultrasound Obstet Gynecol 32:793–799CrossRefGoogle Scholar
  19. 19.
    Albanese CT, Lopoo J, Goldstein RB et al (1998) Fetal liver position and perinatal outcome for congenital diaphragmatic hernia. Prenat Diagn 11:1138–1142CrossRefGoogle Scholar
  20. 20.
    Fluke S, Kanzaki T, Mu J et al (2003) Antenatal prediction of pulmonary hypoplasia by acceleration time/ejection time ratio of fetal pulmonary arteries by Doppler blood flow velocity entry. Am J Obstet Gynecol 188:228–233CrossRefGoogle Scholar
  21. 21.
    Sokol J, Shimizu N, Bohn D et al (2006) Fetal pulmonary artery diameter measurements as a predictor of morbidity in antenatally diagnosed congenital diaphragmatic hernia: a prospective study. Am J Obstet Gynecol 195:470–477CrossRefGoogle Scholar
  22. 22.
    Spaggiari E, Stirnemann J, Bernard JP et al (2013) Prognostic value of a hernia sac in congenital diaphragmatic hernia. Ultrasound Obstet Gynecol 41:286–290CrossRefGoogle Scholar
  23. 23.
    Zamora IJ, Cass DL, Lee TC et al (2013) The presence of a hernia sac in congenital diaphragmatic hernia is associated with better fetal lung growth and outcomes. J Pediatr Surg 48:1165–1171CrossRefGoogle Scholar
  24. 24.
    Chiu LW, Desai J, Shanti C et al (2016) SNAPPE II score as a predictor of survival in neonates with congenital diaphragmatic hernia: a single center experience. Eur J Pediatr Surg 26:316–321CrossRefGoogle Scholar
  25. 25.
    Lally KP (2013) Standardized reporting for congenital diaphragmatic hernia — an international consensus. J Pediatr Surg 48:2408–2415CrossRefGoogle Scholar
  26. 26.
    Leon R, Li K, Brown BP (2018) A retrospective segmentation analysis of placental volume by magnetic resonance imaging from first trimester to term gestation. Pediatr Radiol 48:1936–1944CrossRefGoogle Scholar
  27. 27.
    Rypens F, Metens T, Roucourt N et al (2001) Fetal lung volume: estimation at MR imaging-initial results. Radiology 219:236–241CrossRefGoogle Scholar
  28. 28.
    Kitano Y (2011) Re-evaluation of stomach position as a simple prognostic factor in fetal left congenital diaphragmatic hernia: a multicenter survey in Japan. Ultrasound Obstet Gynecol 37:277–282CrossRefGoogle Scholar
  29. 29.
    Youden WJ (1950) Index for rating diagnostic tests. Cancer 3:32–35CrossRefGoogle Scholar
  30. 30.
    Faraggi D (2000) The effect of random measurement error on receiver operating characteristic (ROC) curves. Stat Med 19:61–70CrossRefGoogle Scholar
  31. 31.
    Reiser B (2000) Measuring the effectiveness of diagnostic markers in the presence of measurement error through the use of ROC curves. Stat Med 19:2115–2129CrossRefGoogle Scholar
  32. 32.
    Ruopp MD, Perkins NJ, Whitcomb BW, Schisterman EF (2008) Youden index and optimal cut-point estimated from observations affected by a lower limit of detection. Biom J 50:419–430CrossRefGoogle Scholar
  33. 33.
    Victoria T, Bebbington MW, Danzer E et al (2012) Use of magnetic resonance imaging in prenatal prognosis of the fetus with isolated left congenital diaphragmatic hernia. Prenat Diagn 32:715–723CrossRefGoogle Scholar
  34. 34.
    Oluyomi-Obi T, Kuret V, Puligandla P et al (2017) Antenatal predictors of outcome in prenatally diagnosed congenital diaphragmatic hernia (CDH). J Pediatr Surg 52:881–888CrossRefGoogle Scholar
  35. 35.
    Hatch EI Jr, Kendall J, Blumhagen J (1992) Stomach position as an in utero predictor of neonatal outcome in left-sided diaphragmatic hernia. J Pediatr Surg 27:778–779CrossRefGoogle Scholar
  36. 36.
    Cordier AG, Jani JC, Cannie MM et al (2015) Stomach position in prediction of survival in left-sided congenital diaphragmatic hernia with or without fetoscopic endoluminal tracheal occlusion. Ultrasound Obstet Gynecol 46:155–161CrossRefGoogle Scholar
  37. 37.
    Le LD, Keswani SG, Biesiada J et al (2012) The congenital diaphragmatic hernia composite prognostic index correlates with survival in left-sided congenital diaphragmatic hernia. J Pediatr Surg 47:57–62CrossRefGoogle Scholar
  38. 38.
    Berman L, Jackson J, Miller K et al (2018) Expert surgical consensus for prenatal counseling using the Delphi method. J Pediatr Surg 53:1592–1599CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Brandon P. Brown
    • 1
    • 2
    Email author
  • Michael T. Clark
    • 3
  • Rachel L. Wise
    • 3
  • Lava R. Timsina
    • 4
  • Thomas A. Reher
    • 2
  • Robert J. Vandewalle
    • 4
  • Joshua J. Brown
    • 1
  • Zoe M. Saenz
    • 3
  • Brian W. Gray
    • 4
  1. 1.The Fetal Center at Riley Children’s HealthIndianapolisUSA
  2. 2.Department of Radiology and Imaging SciencesIndiana University School of MedicineIndianapolisUSA
  3. 3.Indiana University School of MedicineIndianapolisUSA
  4. 4.Division of Pediatric Surgery, Department of SurgeryIndiana University School of MedicineIndianapolisUSA

Personalised recommendations