Pediatric Radiology

, Volume 49, Issue 12, pp 1643–1651 | Cite as

Digital tomosynthesis of the pediatric elbow

  • Matthew A. ZapalaEmail author
  • Kristin Livingston
  • Andrew S. Phelps
  • John D. MacKenzie
Musculoskeletal imaging


Imaging pediatric elbow trauma in the acute setting remains diagnostically challenging given difficult patient positioning, multiple ossification centers of the pediatric elbow, overlapping structures, and complex joint anatomy. Digital tomosynthesis is a technique where the X-ray source travels across a limited arc angle, obtaining a series of low-dose exposures that are in turn digitally reconstructed to produce high in-plane resolution at a relatively low overall radiation dose. Digital tomosynthesis is now more commonly integrated into standard radiographic machines and offers a new and exciting way to assess the pediatric elbow. In this review article we discuss the clinical applications of digital tomosynthesis in pediatric elbow trauma along with challenges related to technique, patient positioning and artifacts.


Children Digital tomosynthesis Elbow Fracture Trauma 


Compliance with ethical standards

Conflicts of interest



  1. 1.
    Iyer RS, Thapa MM, Khanna PC, Chew FS (2012) Pediatric bone imaging: imaging elbow trauma in children — a review of acute and chronic injuries. AJR Am J Roentgenol 198:1053–1068CrossRefGoogle Scholar
  2. 2.
    Landin LA (1983) Fracture patterns in children. Analysis of 8,682 fractures with special reference to incidence, etiology and secular changes in a Swedish urban population 1950–1979. Acta Orthop Scand Suppl 202:100–109Google Scholar
  3. 3.
    Emery KH, Zingula SN, Anton CG et al (2016) Pediatric elbow fractures: a new angle on an old topic. Pediatr Radiol 46:61–66CrossRefGoogle Scholar
  4. 4.
    DeFroda SF, Hansen H, Gil JA et al (2017) Radiographic evaluation of common pediatric elbow injuries. Orthop Rev 9:7030CrossRefGoogle Scholar
  5. 5.
    Cheng JC, Wing-Man K, Shen WY et al (1998) A new look at the sequential development of elbow ossification centers in children. J Pediatr Orthop 18:161–167PubMedGoogle Scholar
  6. 6.
    Patel B, Reed M, Patel S (2009) Gender-specific pattern differences of the ossification centers in the pediatric elbow. Pediatr Radiol 39:226–231CrossRefGoogle Scholar
  7. 7.
    Donnelly LF, Klostermeier TT, Klosterman LA (1998) Traumatic elbow effusions in pediatric patients: are occult fractures the rule? AJR Am J Roentgenol 171:243–245CrossRefGoogle Scholar
  8. 8.
    Skaggs DL, Mirzayan R (1999) The posterior fat pad sign in association with occult fracture of the elbow in children. J Bone Joint Surg Am 81:1429–1433CrossRefGoogle Scholar
  9. 9.
    Major NM, Crawford ST (2002) Elbow effusions in trauma in adults and children: is there an occult fracture? AJR Am J Roentgenol 178:413–418CrossRefGoogle Scholar
  10. 10.
    Al-Aubaidi Z, Torfing T (2012) The role of fat pad sign in diagnosing occult elbow fractures in the pediatric patient: a prospective magnetic resonance imaging study. J Pediatr Orthop B 21:514–519CrossRefGoogle Scholar
  11. 11.
    Lins RE, Simovitch RW, Waters PM (1999) Pediatric elbow trauma. Orthop Clin North Am 30:119–132CrossRefGoogle Scholar
  12. 12.
    Chapman V, Grottkau B, Albright M et al (2006) MDCT of the elbow in pediatric patients with posttraumatic elbow effusions. AJR Am J Roentgenol 187:812–817CrossRefGoogle Scholar
  13. 13.
    Chapman VM, Grottkau BE, Albright M et al (2005) Multidetector computed tomography of pediatric lateral condylar fractures. J Comput Assist Tomogr 29:842–846CrossRefGoogle Scholar
  14. 14.
    Maravilla KR, Murry RC Jr, Horner S (1983) Digital tomosynthesis: technique for electronic reconstructive tomography. AJR Am J Roentgenol 41:497–502CrossRefGoogle Scholar
  15. 15.
    Compton N, Murphy L, Lyons F et al (2018) Tomosynthesis: a new radiologic technique for rapid diagnosis of scaphoid fractures. Surgeon 16:131–136CrossRefGoogle Scholar
  16. 16.
    Ottenin MA, Jacquot A, Grospretre O et al (2012) Evaluation of the diagnostic performance of tomosynthesis in fractures of the wrist. AJR Am J Roentgenol 198:180–186CrossRefGoogle Scholar
  17. 17.
    Geijer M, Börjesson AM, Göthlin JH (2011) Clinical utility of tomosynthesis in suspected scaphoid fracture. A pilot study. Skelet Radiol 40:863–867CrossRefGoogle Scholar
  18. 18.
    Nelson F, Bokhari O, Oravec D et al (2017) The use of tomosynthesis in the global study of knee subchondral insufficiency fractures. Acad Radiol 24:175–183CrossRefGoogle Scholar
  19. 19.
    Ha AS, Lee AY, Hippe DS et al (2015) Digital tomosynthesis to evaluate fracture healing: prospective comparison with radiography and CT. AJR Am J Roentgenol 205:136–141CrossRefGoogle Scholar
  20. 20.
    De Silvestro A, Martini K, Becker AS et al (2018) Postoperative imaging of orthopaedic hardware in the hand and wrist: is there an added value for tomosynthesis? Clin Radiol 73:214.e1–214.e9CrossRefGoogle Scholar
  21. 21.
    Dobbins JT, Godfrey DJ (2003) Digital X-ray tomosynthesis: current state of the art and clinical potential. Phys Med Biol 48:R65–R106CrossRefGoogle Scholar
  22. 22.
    Gislason A, Elbakri IA, Reed M (2009) Dose assessment of digital tomosynthesis in pediatric imaging. Proc SPIE 7258:72585CrossRefGoogle Scholar
  23. 23.
    Geiser WR, Einstein SA, Yang WT (2018) Artifacts in digital breast Tomosynthesis. AJR Am J Roentgenol 21:926–932CrossRefGoogle Scholar
  24. 24.
    Tirada N, Li G, Dreizin D et al (2019) Digital breast tomosynthesis: physics, artifacts, and quality control considerations. Radiographics 39:413–426CrossRefGoogle Scholar
  25. 25.
    Deller T, Jabri KN, Sabol JM et al (2007) Effect of acquisition parameters on image quality in digital tomosynthesis. Proc SPIE 6510:650101Google Scholar
  26. 26.
    Acciavatti RJ, Maidment AD (2012) Optimization of continuous tube motion and step-and-shoot motion in digital breast tomosynthesis systems with patient motion. Phys Med Imaging 8313:831306Google Scholar
  27. 27.
    Gartland JJ (1959) Management of supracondylar fractures of the humerus in children. Surg Gynecol Obstet 109:145–154PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Radiology and Biomedical Imaging, University of California, San FranciscoBenioff Children’s HospitalSan FranciscoUSA
  2. 2.Department of Orthopaedic Surgery, University of California, San FranciscoBenioff Children’s HospitalSan FranciscoUSA

Personalised recommendations