Advertisement

Pediatric Radiology

, Volume 48, Issue 9, pp 1348–1363 | Cite as

Whole-body magnetic resonance imaging: techniques and non-oncologic indications

  • Mary-Louise C. Greer
Pediatric Body MRI
  • 92 Downloads

Abstract

Whole-body MRI is increasingly utilized for assessing oncologic and non-oncologic diseases in infants, children and adolescents. Focusing on the non-oncologic indications, this review covers technical elements required to perform whole-body MRI, the advantages and limitations of the technique, and protocol modifications tailored to specific indications. Rheumatologic diseases account for the majority of non-oncologic whole-body MRI performed in pediatric patients at the author’s institution. Whole-body MRI helps in establishing the diagnosis, documenting disease extent and severity, and monitoring treatment response in enthesitis-related arthritis (ERA) and chronic recurrent multifocal osteomyelitis (CRMO). Other non-oncologic indications for whole-body MRI include osteomyelitis (usually pyogenic), pyrexia of unknown origin, neuromuscular disorders, inherited and inflammatory myopathies such as juvenile dermatomyositis and polymyositis, avascular necrosis, and fat/storage disorders. Use of whole-body MRI in postmortem imaging is rising, while whole-body MRI in non-accidental injury is considered to be of limited value. Imaging findings for a range of these indications are reviewed with whole-body MRI examples.

Keywords

Children Chronic recurrent multifocal osteomyelitis Enthesitis-related arthritis Myopathy Osteomyelitis Postmortem Whole-body magnetic resonance imaging 

Notes

Acknowledgments

I thank Govind Chavhan, Andrea Doria, Jennifer Stimec, Manoj Singh, Sumeet Gupta, Tammy Rayner and Ruth Weiss for their contributions developing whole-body MRI at the Hospital for Sick Children, and Warren Corber for his assistance with the clinical audit.

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Ley S, Ley-Zaporozhan J, Schenk JP (2009) Whole-body MRI in the pediatric patient. Eur J Radiol 70:442–451CrossRefPubMedGoogle Scholar
  2. 2.
    Atkin KL, Ditchfield MR (2014) The role of whole-body MRI in pediatric oncology. J Pediatr Hematol Oncol 36:342–352CrossRefPubMedGoogle Scholar
  3. 3.
    Davis JT, Kwatra N, Schooler GR (2016) Pediatric whole-body MRI: a review of current imaging techniques and clinical applications. J Magn Reson Imaging 44:783–793CrossRefPubMedGoogle Scholar
  4. 4.
    Eutsler EP, Khanna G (2016) Whole-body magnetic resonance imaging in children: technique and clinical applications. Pediatr Radiol 46:858–872CrossRefPubMedGoogle Scholar
  5. 5.
    Greer MC, Voss SD, States LJ (2017) Pediatric cancer predisposition imaging: focus on whole-body MRI. Clin Cancer Res 23:e6–e13CrossRefPubMedGoogle Scholar
  6. 6.
    Chavhan GB, Babyn PS (2011) Whole-body MR imaging in children: principles, technique, current applications, and future directions. Radiographics 31:1757–1772CrossRefPubMedGoogle Scholar
  7. 7.
    Attariwala R, Picker W (2013) Whole body MRI: improved lesion detection and characterization with diffusion weighted techniques. J Magn Reson Imaging 38:253–268CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Brenner DJ, Shuryak I, Einstein AJ (2011) Impact of reduced patient life expectancy on potential cancer risks from radiologic imaging. Radiology 261:193–198CrossRefPubMedGoogle Scholar
  9. 9.
    Brady Z, Ramanauskas F, Cain TM et al (2012) Assessment of paediatric CT dose indicators for the purpose of optimisation. Br J Radiol 85:1488–1498CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Goo HW, Choi SH, Ghim T et al (2005) Whole-body MRI of paediatric malignant tumours: comparison with conventional oncological imaging methods. Pediatr Radiol 35:766–773CrossRefPubMedGoogle Scholar
  11. 11.
    Kanda T, Ishii K, Kawaguchi H et al (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841CrossRefPubMedGoogle Scholar
  12. 12.
    Hu HH, Pokorney A, Towbin RB et al (2016) Increased signal intensities in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evidence in children undergoing multiple gadolinium MRI exams. Pediatr Radiol 46:1590–1598CrossRefPubMedGoogle Scholar
  13. 13.
    Flood TF, Stence NV, Maloney JA et al (2017) Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology 282:222–228CrossRefPubMedGoogle Scholar
  14. 14.
    Damasio MB, Magnaguagno F, Stagnaro G (2016) Whole-body MRI: non-oncological applications in paediatrics. Radiol Med 121:454–461CrossRefPubMedGoogle Scholar
  15. 15.
    van Engelen K, Villani A, Wasserman JD et al (2017) DICER1 syndrome: approach to testing and management at a large pediatric tertiary care center. Pediatr Blood Cancer 65(1)Google Scholar
  16. 16.
    Schultz KAP, Rednam SP, Kamihara J et al (2017) PTEN, DICER1, FH, and their associated tumor susceptibility syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:e76–e82CrossRefPubMedGoogle Scholar
  17. 17.
    Bueno MT, Martinez-Rios C, la Puente Gregorio A et al (2017) Pediatric imaging in DICER1 syndrome. Pediatr Radiol 47:1292–1301CrossRefPubMedGoogle Scholar
  18. 18.
    Quijano-Roy S, Avila-Smirnow D, Carlier RY et al (2012) Whole body muscle MRI protocol: pattern recognition in early onset NM disorders. Neuromuscul Disord 22:S68–S84CrossRefPubMedGoogle Scholar
  19. 19.
    Hollingsworth KG, de Sousa PL, Straub V et al (2012) Towards harmonization of protocols for MRI outcome measures in skeletal muscle studies: consensus recommendations from two TREAT-NMD NMR workshops, 2 may 2010, Stockholm, Sweden, 1-2 October 2009, Paris, France. Neuromuscul Disord 22:S54–S67CrossRefPubMedGoogle Scholar
  20. 20.
    Arthurs OJ, van Rijn RR, Whitby EH et al (2016) ESPR postmortem imaging task force: where we begin. Pediatr Radiol 46:1363–1369CrossRefPubMedGoogle Scholar
  21. 21.
    Arthurs OJ, Guy A, Thayyil S et al (2016) Comparison of diagnostic performance for perinatal and paediatric post-mortem imaging: CT versus MRI. Eur Radiol 26:2327–2336CrossRefPubMedGoogle Scholar
  22. 22.
    Thayyil S, Sebire NJ, Chitty LS et al (2013) Post-mortem MRI versus conventional autopsy in fetuses and children: a prospective validation study. Lancet 382:223–233CrossRefPubMedGoogle Scholar
  23. 23.
    Teixeira SR, Elias Junior J, Nogueira-Barbosa MH et al (2015) Whole-body magnetic resonance imaging in children: state of the art. Radiol Bras 48:111–120CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Aquino MR, Tse SM, Gupta S et al (2015) Whole-body MRI of juvenile spondyloarthritis: protocols and pictorial review of characteristic patterns. Pediatr Radiol 45:754–762CrossRefPubMedGoogle Scholar
  25. 25.
    Lecouvet FE (2016) Whole-body MR imaging: musculoskeletal applications. Radiology 279:345–365CrossRefPubMedGoogle Scholar
  26. 26.
    Rednam SP, Erez A, Druker H et al (2017) Von Hippel-Lindau and hereditary pheochromocytoma/paraganglioma syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:e68–e75CrossRefPubMedGoogle Scholar
  27. 27.
    Goo HW (2015) Whole-body MRI in children: current imaging techniques and clinical applications. Korean J Radiol 16:973–985CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mohan S, Moineddin R, Chavhan GB (2015) Pediatric whole-body magnetic resonance imaging: intra-individual comparison of technical quality, artifacts, and fixed structure visibility at 1.5 and 3 T. Indian J Radiol Imaging 25:353–358CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ahlawat S, Fayad LM, Khan MS et al (2016) Current whole-body MRI applications in the neurofibromatoses: NF1, NF2, and schwannomatosis. Neurology 87:S31–S39CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Weckbach S, Michaely HJ, Stemmer A et al (2010) Comparison of a new whole-body continuous-table-movement protocol versus a standard whole-body MR protocol for the assessment of multiple myeloma. Eur Radiol 20:2907–2916CrossRefPubMedGoogle Scholar
  31. 31.
    Lindemann ME, Oehmigen M, Blumhagen JO et al (2017) MR-based truncation and attenuation correction in integrated PET/MR hybrid imaging using HUGE with continuous table motion. Med Phys 44:4559–4572CrossRefPubMedGoogle Scholar
  32. 32.
    Morone M, Bali MA, Tunariu N et al (2017) Whole-body MRI: current applications in oncology. AJR Am J Roentgenol 209:W336–W349CrossRefPubMedGoogle Scholar
  33. 33.
    Costelloe CM, Madewell JE, Kundra V et al (2013) Conspicuity of bone metastases on fast Dixon-based multisequence whole-body MRI: clinical utility per sequence. Magn Reson Imaging 31:669–675CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Klenk C, Gawande R, Uslu L et al (2014) Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-centre study. Lancet Oncol 15:275–285CrossRefPubMedGoogle Scholar
  35. 35.
    Finn JP, Nguyen KL, Hu P (2017) Ferumoxytol vs. gadolinium agents for contrast-enhanced MRI: thoughts on evolving indications, risks, and benefits. J Magn Reson Imaging 46:919–923Google Scholar
  36. 36.
    Nievelstein RA, Littooij AS (2016) Whole-body MRI in paediatric oncology. Radiol Med 121:442–453CrossRefPubMedGoogle Scholar
  37. 37.
    Jaramillo D (2010) Whole-body MR imaging, bone diffusion imaging: how and why? Pediatr Radiol 40:978–984CrossRefPubMedGoogle Scholar
  38. 38.
    Merlini L, Carpentier M, Ferrey S et al (2017) Whole-body MRI in children: would a 3D STIR sequence alone be sufficient for investigating common paediatric conditions? A comparative study. Eur J Radiol 88:155–162CrossRefPubMedGoogle Scholar
  39. 39.
    Carter AJ, Greer ML, Gray SE et al (2010) Mock MRI: reducing the need for anaesthesia in children. Pediatr Radiol 40:1368–1374CrossRefPubMedGoogle Scholar
  40. 40.
    Jaimes C, Gee MS (2016) Strategies to minimize sedation in pediatric body magnetic resonance imaging. Pediatr Radiol 46:916–927CrossRefPubMedGoogle Scholar
  41. 41.
    Korchi AM, Hanquinet S, Anooshiravani M et al (2014) Whole-body magnetic resonance imaging: an essential tool for diagnosis and work up of non-oncological systemic diseases in children. Minerva Pediatr 66:169–176PubMedGoogle Scholar
  42. 42.
    Perez-Rossello JM, Connolly SA, Newton AW et al (2010) Whole-body MRI in suspected infant abuse. AJR Am J Roentgenol 195:744–750CrossRefPubMedGoogle Scholar
  43. 43.
    Ostergaard M, Eshed I, Althoff CE et al (2017) Whole-body magnetic resonance imaging in inflammatory arthritis: systematic literature review and first steps toward standardization and an OMERACT scoring system. J Rheumatol 44:1699–1705CrossRefPubMedGoogle Scholar
  44. 44.
    Weiss PF (2016) Update on enthesitis-related arthritis. Curr Opin Rheumatol 28:530–536CrossRefPubMedGoogle Scholar
  45. 45.
    Arnoldi AP, Schlett CL, Douis H et al (2017) Whole-body MRI in patients with non-bacterial osteitis: radiological findings and correlation with clinical data. Eur Radiol 27:2391–2399CrossRefPubMedGoogle Scholar
  46. 46.
    von Kalle T, Heim N, Hospach T et al (2013) Typical patterns of bone involvement in whole-body MRI of patients with chronic recurrent multifocal osteomyelitis (CRMO). Rofo 185:655–661CrossRefGoogle Scholar
  47. 47.
    Voit AM, Arnoldi AP, Douis H et al (2015) Whole-body magnetic resonance imaging in chronic recurrent multifocal osteomyelitis: clinical longterm assessment may underestimate activity. J Rheumatol 42:1455–1462CrossRefPubMedGoogle Scholar
  48. 48.
    Falip C, Alison M, Boutry N et al (2013) Chronic recurrent multifocal osteomyelitis (CRMO): a longitudinal case series review. Pediatr Radiol 43:355–375CrossRefPubMedGoogle Scholar
  49. 49.
    Leclair N, Thormer G, Sorge I et al (2016) Whole-body diffusion-weighted imaging in chronic recurrent multifocal osteomyelitis in children. PLoS One 11:e0147523CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Zhen-Guo H, Min-Xing Y, Xiao-Liang C et al (2017) Value of whole-body magnetic resonance imaging for screening multifocal osteonecrosis in patients with polymyositis/dermatomyositis. Br J Radiol 90:20160780CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Huang ZG, Gao BX, Chen H et al (2017) An efficacy analysis of whole-body magnetic resonance imaging in the diagnosis and follow-up of polymyositis and dermatomyositis. PLoS One 12:e0181069CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Pratesi A, Medici A, Bresci R et al (2013) Sickle cell-related bone marrow complications: the utility of diffusion-weighted magnetic resonance imaging. J Pediatr Hematol Oncol 35:329–330CrossRefPubMedGoogle Scholar
  53. 53.
    Littooij AS, Kwee TC, Enriquez G et al (2017) Whole-body MRI reveals high incidence of osteonecrosis in children treated for Hodgkin lymphoma. Br J Haematol 176:637–642CrossRefPubMedGoogle Scholar
  54. 54.
    Darge K, Jaramillo D, Siegel MJ (2008) Whole-body MRI in children: current status and future applications. Eur J Radiol 68:289–298CrossRefPubMedGoogle Scholar
  55. 55.
    Orsso CE, Mackenzie M, Alberga AS et al (2017) The use of magnetic resonance imaging to characterize abnormal body composition phenotypes in youth with Prader-Willi syndrome. Metabolism 69:67–75CrossRefPubMedGoogle Scholar
  56. 56.
    Norman W, Jawad N, Jones R et al (2016) Perinatal and paediatric post-mortem magnetic resonance imaging (PMMR): sequences and technique. Br J Radiol 89:20151028CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Shruthi M, Gupta J, Jana M et al (2018) Conventional vs. virtual autopsy with postmortem MRI in phenotypic characterization of stillbirths and malformed fetuses. Ultrasound Obstet Gynecol 51:236-245Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Diagnostic ImagingThe Hospital for Sick ChildrenTorontoCanada
  2. 2.Department of Medical ImagingUniversity of TorontoTorontoCanada

Personalised recommendations