Pediatric Radiology

, Volume 48, Issue 9, pp 1348–1363 | Cite as

Whole-body magnetic resonance imaging: techniques and non-oncologic indications

  • Mary-Louise C. Greer
Pediatric Body MRI


Whole-body MRI is increasingly utilized for assessing oncologic and non-oncologic diseases in infants, children and adolescents. Focusing on the non-oncologic indications, this review covers technical elements required to perform whole-body MRI, the advantages and limitations of the technique, and protocol modifications tailored to specific indications. Rheumatologic diseases account for the majority of non-oncologic whole-body MRI performed in pediatric patients at the author’s institution. Whole-body MRI helps in establishing the diagnosis, documenting disease extent and severity, and monitoring treatment response in enthesitis-related arthritis (ERA) and chronic recurrent multifocal osteomyelitis (CRMO). Other non-oncologic indications for whole-body MRI include osteomyelitis (usually pyogenic), pyrexia of unknown origin, neuromuscular disorders, inherited and inflammatory myopathies such as juvenile dermatomyositis and polymyositis, avascular necrosis, and fat/storage disorders. Use of whole-body MRI in postmortem imaging is rising, while whole-body MRI in non-accidental injury is considered to be of limited value. Imaging findings for a range of these indications are reviewed with whole-body MRI examples.


Children Chronic recurrent multifocal osteomyelitis Enthesitis-related arthritis Myopathy Osteomyelitis Postmortem Whole-body magnetic resonance imaging 



I thank Govind Chavhan, Andrea Doria, Jennifer Stimec, Manoj Singh, Sumeet Gupta, Tammy Rayner and Ruth Weiss for their contributions developing whole-body MRI at the Hospital for Sick Children, and Warren Corber for his assistance with the clinical audit.

Compliance with ethical standards

Conflicts of interest



  1. 1.
    Ley S, Ley-Zaporozhan J, Schenk JP (2009) Whole-body MRI in the pediatric patient. Eur J Radiol 70:442–451CrossRefPubMedGoogle Scholar
  2. 2.
    Atkin KL, Ditchfield MR (2014) The role of whole-body MRI in pediatric oncology. J Pediatr Hematol Oncol 36:342–352CrossRefPubMedGoogle Scholar
  3. 3.
    Davis JT, Kwatra N, Schooler GR (2016) Pediatric whole-body MRI: a review of current imaging techniques and clinical applications. J Magn Reson Imaging 44:783–793CrossRefPubMedGoogle Scholar
  4. 4.
    Eutsler EP, Khanna G (2016) Whole-body magnetic resonance imaging in children: technique and clinical applications. Pediatr Radiol 46:858–872CrossRefPubMedGoogle Scholar
  5. 5.
    Greer MC, Voss SD, States LJ (2017) Pediatric cancer predisposition imaging: focus on whole-body MRI. Clin Cancer Res 23:e6–e13CrossRefPubMedGoogle Scholar
  6. 6.
    Chavhan GB, Babyn PS (2011) Whole-body MR imaging in children: principles, technique, current applications, and future directions. Radiographics 31:1757–1772CrossRefPubMedGoogle Scholar
  7. 7.
    Attariwala R, Picker W (2013) Whole body MRI: improved lesion detection and characterization with diffusion weighted techniques. J Magn Reson Imaging 38:253–268CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Brenner DJ, Shuryak I, Einstein AJ (2011) Impact of reduced patient life expectancy on potential cancer risks from radiologic imaging. Radiology 261:193–198CrossRefPubMedGoogle Scholar
  9. 9.
    Brady Z, Ramanauskas F, Cain TM et al (2012) Assessment of paediatric CT dose indicators for the purpose of optimisation. Br J Radiol 85:1488–1498CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Goo HW, Choi SH, Ghim T et al (2005) Whole-body MRI of paediatric malignant tumours: comparison with conventional oncological imaging methods. Pediatr Radiol 35:766–773CrossRefPubMedGoogle Scholar
  11. 11.
    Kanda T, Ishii K, Kawaguchi H et al (2014) High signal intensity in the dentate nucleus and globus pallidus on unenhanced T1-weighted MR images: relationship with increasing cumulative dose of a gadolinium-based contrast material. Radiology 270:834–841CrossRefPubMedGoogle Scholar
  12. 12.
    Hu HH, Pokorney A, Towbin RB et al (2016) Increased signal intensities in the dentate nucleus and globus pallidus on unenhanced T1-weighted images: evidence in children undergoing multiple gadolinium MRI exams. Pediatr Radiol 46:1590–1598CrossRefPubMedGoogle Scholar
  13. 13.
    Flood TF, Stence NV, Maloney JA et al (2017) Pediatric brain: repeated exposure to linear gadolinium-based contrast material is associated with increased signal intensity at unenhanced T1-weighted MR imaging. Radiology 282:222–228CrossRefPubMedGoogle Scholar
  14. 14.
    Damasio MB, Magnaguagno F, Stagnaro G (2016) Whole-body MRI: non-oncological applications in paediatrics. Radiol Med 121:454–461CrossRefPubMedGoogle Scholar
  15. 15.
    van Engelen K, Villani A, Wasserman JD et al (2017) DICER1 syndrome: approach to testing and management at a large pediatric tertiary care center. Pediatr Blood Cancer 65(1)Google Scholar
  16. 16.
    Schultz KAP, Rednam SP, Kamihara J et al (2017) PTEN, DICER1, FH, and their associated tumor susceptibility syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:e76–e82CrossRefPubMedGoogle Scholar
  17. 17.
    Bueno MT, Martinez-Rios C, la Puente Gregorio A et al (2017) Pediatric imaging in DICER1 syndrome. Pediatr Radiol 47:1292–1301CrossRefPubMedGoogle Scholar
  18. 18.
    Quijano-Roy S, Avila-Smirnow D, Carlier RY et al (2012) Whole body muscle MRI protocol: pattern recognition in early onset NM disorders. Neuromuscul Disord 22:S68–S84CrossRefPubMedGoogle Scholar
  19. 19.
    Hollingsworth KG, de Sousa PL, Straub V et al (2012) Towards harmonization of protocols for MRI outcome measures in skeletal muscle studies: consensus recommendations from two TREAT-NMD NMR workshops, 2 may 2010, Stockholm, Sweden, 1-2 October 2009, Paris, France. Neuromuscul Disord 22:S54–S67CrossRefPubMedGoogle Scholar
  20. 20.
    Arthurs OJ, van Rijn RR, Whitby EH et al (2016) ESPR postmortem imaging task force: where we begin. Pediatr Radiol 46:1363–1369CrossRefPubMedGoogle Scholar
  21. 21.
    Arthurs OJ, Guy A, Thayyil S et al (2016) Comparison of diagnostic performance for perinatal and paediatric post-mortem imaging: CT versus MRI. Eur Radiol 26:2327–2336CrossRefPubMedGoogle Scholar
  22. 22.
    Thayyil S, Sebire NJ, Chitty LS et al (2013) Post-mortem MRI versus conventional autopsy in fetuses and children: a prospective validation study. Lancet 382:223–233CrossRefPubMedGoogle Scholar
  23. 23.
    Teixeira SR, Elias Junior J, Nogueira-Barbosa MH et al (2015) Whole-body magnetic resonance imaging in children: state of the art. Radiol Bras 48:111–120CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Aquino MR, Tse SM, Gupta S et al (2015) Whole-body MRI of juvenile spondyloarthritis: protocols and pictorial review of characteristic patterns. Pediatr Radiol 45:754–762CrossRefPubMedGoogle Scholar
  25. 25.
    Lecouvet FE (2016) Whole-body MR imaging: musculoskeletal applications. Radiology 279:345–365CrossRefPubMedGoogle Scholar
  26. 26.
    Rednam SP, Erez A, Druker H et al (2017) Von Hippel-Lindau and hereditary pheochromocytoma/paraganglioma syndromes: clinical features, genetics, and surveillance recommendations in childhood. Clin Cancer Res 23:e68–e75CrossRefPubMedGoogle Scholar
  27. 27.
    Goo HW (2015) Whole-body MRI in children: current imaging techniques and clinical applications. Korean J Radiol 16:973–985CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Mohan S, Moineddin R, Chavhan GB (2015) Pediatric whole-body magnetic resonance imaging: intra-individual comparison of technical quality, artifacts, and fixed structure visibility at 1.5 and 3 T. Indian J Radiol Imaging 25:353–358CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Ahlawat S, Fayad LM, Khan MS et al (2016) Current whole-body MRI applications in the neurofibromatoses: NF1, NF2, and schwannomatosis. Neurology 87:S31–S39CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Weckbach S, Michaely HJ, Stemmer A et al (2010) Comparison of a new whole-body continuous-table-movement protocol versus a standard whole-body MR protocol for the assessment of multiple myeloma. Eur Radiol 20:2907–2916CrossRefPubMedGoogle Scholar
  31. 31.
    Lindemann ME, Oehmigen M, Blumhagen JO et al (2017) MR-based truncation and attenuation correction in integrated PET/MR hybrid imaging using HUGE with continuous table motion. Med Phys 44:4559–4572CrossRefPubMedGoogle Scholar
  32. 32.
    Morone M, Bali MA, Tunariu N et al (2017) Whole-body MRI: current applications in oncology. AJR Am J Roentgenol 209:W336–W349CrossRefPubMedGoogle Scholar
  33. 33.
    Costelloe CM, Madewell JE, Kundra V et al (2013) Conspicuity of bone metastases on fast Dixon-based multisequence whole-body MRI: clinical utility per sequence. Magn Reson Imaging 31:669–675CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Klenk C, Gawande R, Uslu L et al (2014) Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: a prospective, non-randomised, single-centre study. Lancet Oncol 15:275–285CrossRefPubMedGoogle Scholar
  35. 35.
    Finn JP, Nguyen KL, Hu P (2017) Ferumoxytol vs. gadolinium agents for contrast-enhanced MRI: thoughts on evolving indications, risks, and benefits. J Magn Reson Imaging 46:919–923Google Scholar
  36. 36.
    Nievelstein RA, Littooij AS (2016) Whole-body MRI in paediatric oncology. Radiol Med 121:442–453CrossRefPubMedGoogle Scholar
  37. 37.
    Jaramillo D (2010) Whole-body MR imaging, bone diffusion imaging: how and why? Pediatr Radiol 40:978–984CrossRefPubMedGoogle Scholar
  38. 38.
    Merlini L, Carpentier M, Ferrey S et al (2017) Whole-body MRI in children: would a 3D STIR sequence alone be sufficient for investigating common paediatric conditions? A comparative study. Eur J Radiol 88:155–162CrossRefPubMedGoogle Scholar
  39. 39.
    Carter AJ, Greer ML, Gray SE et al (2010) Mock MRI: reducing the need for anaesthesia in children. Pediatr Radiol 40:1368–1374CrossRefPubMedGoogle Scholar
  40. 40.
    Jaimes C, Gee MS (2016) Strategies to minimize sedation in pediatric body magnetic resonance imaging. Pediatr Radiol 46:916–927CrossRefPubMedGoogle Scholar
  41. 41.
    Korchi AM, Hanquinet S, Anooshiravani M et al (2014) Whole-body magnetic resonance imaging: an essential tool for diagnosis and work up of non-oncological systemic diseases in children. Minerva Pediatr 66:169–176PubMedGoogle Scholar
  42. 42.
    Perez-Rossello JM, Connolly SA, Newton AW et al (2010) Whole-body MRI in suspected infant abuse. AJR Am J Roentgenol 195:744–750CrossRefPubMedGoogle Scholar
  43. 43.
    Ostergaard M, Eshed I, Althoff CE et al (2017) Whole-body magnetic resonance imaging in inflammatory arthritis: systematic literature review and first steps toward standardization and an OMERACT scoring system. J Rheumatol 44:1699–1705CrossRefPubMedGoogle Scholar
  44. 44.
    Weiss PF (2016) Update on enthesitis-related arthritis. Curr Opin Rheumatol 28:530–536CrossRefPubMedGoogle Scholar
  45. 45.
    Arnoldi AP, Schlett CL, Douis H et al (2017) Whole-body MRI in patients with non-bacterial osteitis: radiological findings and correlation with clinical data. Eur Radiol 27:2391–2399CrossRefPubMedGoogle Scholar
  46. 46.
    von Kalle T, Heim N, Hospach T et al (2013) Typical patterns of bone involvement in whole-body MRI of patients with chronic recurrent multifocal osteomyelitis (CRMO). Rofo 185:655–661CrossRefGoogle Scholar
  47. 47.
    Voit AM, Arnoldi AP, Douis H et al (2015) Whole-body magnetic resonance imaging in chronic recurrent multifocal osteomyelitis: clinical longterm assessment may underestimate activity. J Rheumatol 42:1455–1462CrossRefPubMedGoogle Scholar
  48. 48.
    Falip C, Alison M, Boutry N et al (2013) Chronic recurrent multifocal osteomyelitis (CRMO): a longitudinal case series review. Pediatr Radiol 43:355–375CrossRefPubMedGoogle Scholar
  49. 49.
    Leclair N, Thormer G, Sorge I et al (2016) Whole-body diffusion-weighted imaging in chronic recurrent multifocal osteomyelitis in children. PLoS One 11:e0147523CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Zhen-Guo H, Min-Xing Y, Xiao-Liang C et al (2017) Value of whole-body magnetic resonance imaging for screening multifocal osteonecrosis in patients with polymyositis/dermatomyositis. Br J Radiol 90:20160780CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Huang ZG, Gao BX, Chen H et al (2017) An efficacy analysis of whole-body magnetic resonance imaging in the diagnosis and follow-up of polymyositis and dermatomyositis. PLoS One 12:e0181069CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Pratesi A, Medici A, Bresci R et al (2013) Sickle cell-related bone marrow complications: the utility of diffusion-weighted magnetic resonance imaging. J Pediatr Hematol Oncol 35:329–330CrossRefPubMedGoogle Scholar
  53. 53.
    Littooij AS, Kwee TC, Enriquez G et al (2017) Whole-body MRI reveals high incidence of osteonecrosis in children treated for Hodgkin lymphoma. Br J Haematol 176:637–642CrossRefPubMedGoogle Scholar
  54. 54.
    Darge K, Jaramillo D, Siegel MJ (2008) Whole-body MRI in children: current status and future applications. Eur J Radiol 68:289–298CrossRefPubMedGoogle Scholar
  55. 55.
    Orsso CE, Mackenzie M, Alberga AS et al (2017) The use of magnetic resonance imaging to characterize abnormal body composition phenotypes in youth with Prader-Willi syndrome. Metabolism 69:67–75CrossRefPubMedGoogle Scholar
  56. 56.
    Norman W, Jawad N, Jones R et al (2016) Perinatal and paediatric post-mortem magnetic resonance imaging (PMMR): sequences and technique. Br J Radiol 89:20151028CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Shruthi M, Gupta J, Jana M et al (2018) Conventional vs. virtual autopsy with postmortem MRI in phenotypic characterization of stillbirths and malformed fetuses. Ultrasound Obstet Gynecol 51:236-245Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Diagnostic ImagingThe Hospital for Sick ChildrenTorontoCanada
  2. 2.Department of Medical ImagingUniversity of TorontoTorontoCanada

Personalised recommendations