Advertisement

Pediatric Radiology

, Volume 48, Issue 9, pp 1197–1208 | Cite as

Fast, free-breathing and motion-minimized techniques for pediatric body magnetic resonance imaging

  • Camilo Jaimes
  • John E. Kirsch
  • Michael S. Gee
Pediatric Body MRI

Abstract

Magnetic resonance imaging (MRI) is the preferred imaging modality in children with complex medical issues. Patient motion and respiration remain major challenges in pediatric abdominal MRI. Young children ages 3 months to 6 years are unable to cooperate or perform breath-holding and frequently require deep sedation or general anesthesia to undergo MRI. Given the growing concerns associated with the use of sedation and anesthesia as well as the adverse impact on workflow, developing and implementing fast and motion-resistant MRI sequences are of great interest. Fast sequences such as single-shot fast spin echo and balanced steady-state free precession are useful as quick anatomical surveys on routine abdominal MRI. The widespread utilization of parallel imaging and sequences with radial k-space sampling has contributed to decreasing scan time and improving image quality, respectively. Newer strategies including compressed sensing, simultaneous multi-slice acquisition, and hybrid approaches hold the prospect of faster image acquisition that could significantly reduce the need for sedation in this vulnerable population and decrease the time of anesthesia in cases where it is indicated.

Keywords

Acquisition time Children K-space Magnetic resonance imaging Motion Technique 

Notes

Compliance with ethical standards

Conflicts of interest

None

References

  1. 1.
    Darge K, Anupindi SA, Jaramillo D (2011) MR imaging of the abdomen and pelvis in infants, children, and adolescents. Radiology 261:12–29CrossRefPubMedGoogle Scholar
  2. 2.
    Laor T, Jaramillo D (2009) MR imaging insights into skeletal maturation: what is normal? Radiology 250:28–38CrossRefPubMedGoogle Scholar
  3. 3.
    Heller BJ, Yudkowitz FS, Lipson S (2017) Can we reduce anesthesia exposure? Neonatal brain MRI: swaddling vs. sedation, a national survey. J Clin Anesth 38:119–122CrossRefPubMedGoogle Scholar
  4. 4.
    Jaimes C, Gee MS (2016) Strategies to minimize sedation in pediatric body magnetic resonance imaging. Pediatr Radiol 46:916–927CrossRefPubMedGoogle Scholar
  5. 5.
    Slovis TL (2011) Sedation and anesthesia issues in pediatric imaging. Pediatr Radiol 41:514–516CrossRefPubMedGoogle Scholar
  6. 6.
    Wilder RT, Flick RP, Sprung J et al (2009) Early exposure to anesthesia and learning disabilities in a population-based birth cohort. Anesthesiology 110:796–804CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Vanderby SA, Babyn PS, Carter MW et al (2010) Effect of anesthesia and sedation on pediatric MR imaging patient flow. Radiology 256:229–237CrossRefPubMedGoogle Scholar
  8. 8.
    Jaimes C, Murcia DJ, Miguel K et al (2018) Identification of quality improvement areas in pediatric MRI from analysis of patient safety reports. Pediatr Radiol 48:66–73CrossRefPubMedGoogle Scholar
  9. 9.
    Creeley CE, Dikranian KT, Dissen GA et al (2014) Isoflurane-induced apoptosis of neurons and oligodendrocytes in the fetal rhesus macaque brain. Anesthesiology 120:626–638CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Creeley C, Dikranian K, Dissen G et al (2013) Propofol-induced apoptosis of neurones and oligodendrocytes in fetal and neonatal rhesus macaque brain. Br J Anaesth 110:i29–i38CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Brambrink AM, Evers AS, Avidan MS et al (2012) Ketamine-induced neuroapoptosis in the fetal and neonatal rhesus macaque brain. Anesthesiology 116:372–384CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Flick RP, Katusic SK, Colligan RC et al (2011) Cognitive and behavioral outcomes after early exposure to anesthesia and surgery. Pediatrics 128:e1053–e1061CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Hennig J, Nauerth A, Friedburg H (1986) RARE imaging: a fast imaging method for clinical MR. Magn Reson Med 3:823–833CrossRefPubMedGoogle Scholar
  14. 14.
    Patel MR, Klufas RA, Alberico RA, Edelman RR (1997) Half-fourier acquisition single-shot turbo spin-echo (HASTE) MR: comparison with fast spin-echo MR in diseases of the brain. AJNR Am J Neuroradiol 18:1635–1640PubMedGoogle Scholar
  15. 15.
    Jung BA, Weigel M (2013) Spin echo magnetic resonance imaging. J Magn Reson Imaging 37:805–817CrossRefPubMedGoogle Scholar
  16. 16.
    Gee MS, Harisinghani MG (2011) MRI in patients with inflammatory bowel disease. J Magn Reson Imaging 33:527–534CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Ream JM, Rosenkrantz AB (2015) Advances in T1-weighted and T2-weighted imaging in the abdomen and pelvis. Radiol Clin N Am 53:583–598CrossRefPubMedGoogle Scholar
  18. 18.
    Ruangwattanapaisarn N, Loening AM, Saranathan M et al (2015) Faster pediatric 3-T abdominal magnetic resonance imaging: comparison between conventional and variable refocusing flip-angle single-shot fast spin-echo sequences. Pediatr Radiol 45:847–854CrossRefPubMedGoogle Scholar
  19. 19.
    Hargreaves BA (2012) Rapid gradient-echo imaging. J Magn Reson Imaging 36:1300–1313CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Wakamiya M, Furukawa A, Kanasaki S, Murata K (2011) Assessment of small bowel motility function with cine-MRI using balanced steady-state free precession sequence. J Magn Reson Imaging 33:1235–1240CrossRefPubMedGoogle Scholar
  21. 21.
    Dixon WT (1984) Simple proton spectroscopic imaging. Radiology 153:189–194CrossRefPubMedGoogle Scholar
  22. 22.
    Kim BS, Angthong W, Jeon YH, Semelka RC (2014) Body MR imaging: fast, efficient, and comprehensive. Radiol Clin North Am 52:623–636CrossRefPubMedGoogle Scholar
  23. 23.
    Chavhan GB, Babyn PS, Vasanawala SS (2013) Abdominal MR imaging in children: motion compensation, sequence optimization, and protocol organization. Radiographics 33:703–719CrossRefPubMedGoogle Scholar
  24. 24.
    Khrichenko D, Darge K (2010) Functional analysis in MR urography — made simple. Pediatr Radiol 40:182–199CrossRefPubMedGoogle Scholar
  25. 25.
    Bedoya MA, Jaimes C, Khrichenko D et al (2014) Dynamic gadolinium-enhanced MRI of the proximal femur: preliminary experience in healthy children. AJR Am J Roentgenol 203:W440–W446CrossRefPubMedGoogle Scholar
  26. 26.
    Chandarana H, Block KT, Winfeld MJ et al (2014) Free-breathing contrast-enhanced T1-weighted gradient-echo imaging with radial k-space sampling for paediatric abdominopelvic MRI. Eur Radiol 24:320–326CrossRefPubMedGoogle Scholar
  27. 27.
    Azevedo RM, de Campos RO, Ramalho M et al (2011) Free-breathing 3D T1-weighted gradient-echo sequence with radial data sampling in abdominal MRI: preliminary observations. AJR Am J Roentgenol 197:650–657CrossRefPubMedGoogle Scholar
  28. 28.
    Keil B, Alagappan V, Mareyam A et al (2011) Size-optimized 32-channel brain arrays for 3 T pediatric imaging. Magn Reson Med 66:1777–1787CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Roemer PB, Edelstein WA, Hayes CE et al (1990) The NMR phased array. Magn Reson Med 16:192–225CrossRefPubMedGoogle Scholar
  30. 30.
    Glockner JF, Hu HH, Stanley DW et al (2005) Parallel MR imaging: a user's guide. Radiographics 25:1279–1297CrossRefPubMedGoogle Scholar
  31. 31.
    Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P (1999) SENSE: sensitivity encoding for fast MRI. Magn Reson Med 42:952–962CrossRefPubMedGoogle Scholar
  32. 32.
    Griswold MA, Jakob PM, Heidemann RM et al (2002) Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47:1202–1210CrossRefPubMedGoogle Scholar
  33. 33.
    van den Brink JS, Watanabe Y, Kuhl CK et al (2003) Implications of SENSE MR in routine clinical practice. Eur J Radiol 46:3–27CrossRefPubMedGoogle Scholar
  34. 34.
    Yoshioka H, Takahashi N, Yamaguchi M et al (2002) Double arterial phase dynamic MRI with sensitivity encoding (SENSE) for hypervascular hepatocellular carcinomas. J Magn Reson Imaging 16:259–266CrossRefPubMedGoogle Scholar
  35. 35.
    Keil B, Blau JN, Biber S et al (2013) A 64-channel 3T array coil for accelerated brain MRI. Magn Reson Med 70:248–258CrossRefPubMedGoogle Scholar
  36. 36.
    Pipe JG (1999) Motion correction with PROPELLER MRI: application to head motion and free-breathing cardiac imaging. Magn Reson Med 42:963–969CrossRefPubMedGoogle Scholar
  37. 37.
    Lee JH, Choi YH, Cheon JE et al (2015) Improved abdominal MRI in non-breath-holding children using a radial k-space sampling technique. Pediatr Radiol 45:840–846CrossRefPubMedGoogle Scholar
  38. 38.
    Chandarana H, Block TK, Rosenkrantz AB et al (2011) Free-breathing radial 3D fat-suppressed T1-weighted gradient echo sequence: a viable alternative for contrast-enhanced liver imaging in patients unable to suspend respiration. Investig Radiol 46:648–653CrossRefGoogle Scholar
  39. 39.
    Song HK, Dougherty L (2004) Dynamic MRI with projection reconstruction and KWIC processing for simultaneous high spatial and temporal resolution. Magn Reson Med 52:815–824CrossRefPubMedGoogle Scholar
  40. 40.
    Dougherty L, Isaac G, Rosen MA et al (2007) High frame-rate simultaneous bilateral breast DCE-MRI. Magn Reson Med 57:220–225CrossRefPubMedGoogle Scholar
  41. 41.
    Feng L, Benkert T, Block KT et al (2017) Compressed sensing for body MRI. J Magn Reson Imaging 45:966–987CrossRefPubMedGoogle Scholar
  42. 42.
    Lustig M, Donoho D, Pauly JM (2007) Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 58:1182–1195CrossRefPubMedGoogle Scholar
  43. 43.
    Block KT, Uecker M, Frahm J (2007) Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint. Magn Reson Med 57:1086–1098CrossRefPubMedGoogle Scholar
  44. 44.
    Vasanawala SS, Alley MT, Hargreaves BA et al (2010) Improved pediatric MR imaging with compressed sensing. Radiology 256:607–616CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Zhang T, Yousaf U, Hsiao A et al (2015) Clinical performance of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced pediatric abdominal MR angiography. Pediatr Radiol 45:1635–1643CrossRefPubMedPubMedCentralGoogle Scholar
  46. 46.
    Benkert T, Feng L, Sodickson DK et al (2017) Free-breathing volumetric fat/water separation by combining radial sampling, compressed sensing, and parallel imaging. Magn Reson Med 78:565–576CrossRefPubMedGoogle Scholar
  47. 47.
    Feng L, Axel L, Chandarana H et al (2016) XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn Reson Med 75:775–788CrossRefPubMedGoogle Scholar
  48. 48.
    Chandarana H, Feng L, Block TK et al (2013) Free-breathing contrast-enhanced multiphase MRI of the liver using a combination of compressed sensing, parallel imaging, and golden-angle radial sampling. Investig Radiol 48:10–16CrossRefGoogle Scholar
  49. 49.
    Cheng JY, Zhang T, Ruangwattanapaisarn N et al (2015) Free-breathing pediatric MRI with nonrigid motion correction and acceleration. J Magn Reson Imaging 42:407–420CrossRefPubMedGoogle Scholar
  50. 50.
    Zhang T, Cheng JY, Potnick AG et al (2015) Fast pediatric 3D free-breathing abdominal dynamic contrast enhanced MRI with high spatiotemporal resolution. J Magn Reson Imaging 41:460–473CrossRefPubMedGoogle Scholar
  51. 51.
    Baron CA, Dwork N, Pauly JM, Nishimura DG (2017) Rapid compressed sensing reconstruction of 3D non-Cartesian MRI. Magn Reson Med.  https://doi.org/10.1002/mrm.26928
  52. 52.
    Chang CH, Yu X, Ji JX (2017) Compressed sensing MRI reconstruction from 3D multichannel data using GPUs. Magn Reson Med 78:2265–2274CrossRefPubMedGoogle Scholar
  53. 53.
    Feinberg DA, Setsompop K (2013) Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. J Magn Reson 229:90–100CrossRefPubMedPubMedCentralGoogle Scholar
  54. 54.
    Setsompop K, Cohen-Adad J, Gagoski BA et al (2012) Improving diffusion MRI using simultaneous multi-slice echo planar imaging. NeuroImage 63:569–580CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Obele CC, Glielmi C, Ream J et al (2015) Simultaneous multislice accelerated free-breathing diffusion-weighted imaging of the liver at 3T. Abdom Imaging 40:2323–2330CrossRefPubMedGoogle Scholar
  56. 56.
    Longo MG, Fagundes J, Huang S et al (2017) Simultaneous multislice-based 5-minute lumbar spine MRI protocol: initial experience in a clinical setting. J Neuroimaging 27:442–446CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Camilo Jaimes
    • 1
    • 2
  • John E. Kirsch
    • 2
  • Michael S. Gee
    • 1
    • 2
  1. 1.Division of Pediatric Imaging,Department of RadiologyMassachusetts General HospitalBostonUSA
  2. 2.Department of RadiologyMassachusetts General Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations