Pediatric Radiology

, Volume 49, Issue 5, pp 638–645 | Cite as

Prolonged time between intravenous contrast administration and image acquisition results in increased synovial thickness at magnetic resonance imaging in patients with juvenile idiopathic arthritis

  • Anouk M. BarendregtEmail author
  • E. Charlotte van Gulik
  • Paul F. C. Groot
  • Koert M. Dolman
  • J. Merlijn van den Berg
  • Amara Nassar-Sheikh Rashid
  • Dieneke Schonenberg-Meinema
  • Cristina Lavini
  • Karen Rosendahl
  • Robert Hemke
  • Taco W. Kuijpers
  • Mario Maas
  • Charlotte M. Nusman
Original Article



Post-contrast synovial thickness measurement is necessary for scoring disease activity in juvenile idiopathic arthritis (JIA). However, the timing of post-contrast sequences varies widely among institutions. This variation in timing could influence thickness measurements.


To measure thickness of the synovial membrane on early and late post-contrast knee magnetic resonance (MR) images of patients with JIA.

Materials and methods

Dynamic contrast-enhanced T1-weighted knee MR images of 53 children with JIA with current or past knee arthritis were used to study synovial thickness at time point 1 (about 1 min) and time point 2 (about 5 min after contrast administration). Two experienced readers, who were blinded for the time point, independently measured synovial thickness at a predefined, marked location in the patellofemoral compartment on randomized images. Synovial thickness at the two time points was compared using the Wilcoxon signed rank test. Repeatibility of the synovial thickness measurements was studied using intraclass correlation coefficients and Bland-Altman plots.


Median synovial thickness of the 53 patients (median age: 13.5 years, 59% female) increased with prolonged post-contrast interval with a synovial thickness of 1.4 mm at time point 1 and a synovial thickness of 1.5 mm at time point 2 (P<0.001). Repeated synovial thickness measurements showed an intraclass correlation coefficient (ICC) of 0.75, P<0.05 for time point 1 and an ICC of 0.91, P<0.05 for time point 2.


Post-contrast synovial membrane thickness measurements are time-dependent. Therefore, standardization of post-contrast image acquisition timing is important to achieve consistent grading of synovial inflammation.


Adolescents Children Contrast media Juvenile arthritis Knee joint Magnetic resonance imaging Synovial membrane 



This study received funding by the Academic Medical Center through an MD/PhD scholarship awarded to Anouk M. Barendregt.

Compliance with ethical standards

Conflicts of interest


Supplementary material

247_2018_4332_MOESM1_ESM.png (380 kb)
Online Resource 1 Bland-Altman plots of the intra-reader repeatability (PNG 380 kb)


  1. 1.
    Nusman CM, Ording Muller LS, Hemke R et al (2016) Current status of efforts on standardizing magnetic resonance imaging of juvenile idiopathic arthritis: report from the OMERACT MRI in JIA Working Group and Health-e-Child. J Rheumatol 43:239–244CrossRefPubMedGoogle Scholar
  2. 2.
    Hemke R, Kuijpers TW, Van den Berg JM et al (2013) The diagnostic accuracy of unenhanced MRI in the assessment of joint abnormalities in juvenile idiopathic arthritis. Eur Radiol 23:1998–2004CrossRefPubMedGoogle Scholar
  3. 3.
    Østergaard M, Klarlund M (2001) Importance of timing of post-contrast MRI in rheumatoid arthritis: what happens during the first 60 minutes after IV gadolinium-DTPA? Ann Rheum Dis 60:1050–1054CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Hui AY, McCarthy WJ, Masuda K et al (2012) A systems biology approach to synovial joint lubrication in health,injury, and disease. Wiley Interdiscip Rev Syst Biol Med 4:15–37CrossRefPubMedGoogle Scholar
  5. 5.
    Orr C, Vieira-Sousa E, Boyle DL et al (2017) Synovial tissue research: a state-of-the-art review. Nat Rev Rheumatol 13:463–475CrossRefPubMedGoogle Scholar
  6. 6.
    Yamato M, Tamai K, Yamaguchi T, Ohno W (1993) MRI of the knee in rheumatoid arthritis: Gd-DTPA perfusion dynamics. J Comput Assist Tomogr 17:781–785CrossRefPubMedGoogle Scholar
  7. 7.
    Stomp W, Krabben A, van der Heijde D et al (2015) Aiming for a simpler early arthritis MRI protocol: can Gd contrast administration be eliminated? Eur Radiol 25:1520–1527CrossRefPubMedGoogle Scholar
  8. 8.
    Kruithof E, Van den Bossche V, De Rycke L et al (2006) Distinct synovial immunopathologic characteristics of juvenile-onset spondylarthritis and other forms of juvenile idiopathic arthritis. Arthritis Rheum 54:2594–2604CrossRefPubMedGoogle Scholar
  9. 9.
    Østergaard M, Peterfy C, Conaghan P et al (2003) OMERACT Rheumatoid Arthritis Magnetic Resonance Imaging Studies. Core set of MRI acquisitions, joint pathology definitions, and the OMERACT RA-MRI scoring system. J Rheumatol 30:1385–1386PubMedGoogle Scholar
  10. 10.
    Hemke R, van Rossum MA, van Veenendaal M et al (2013) Reliability and responsiveness of the Juvenile Arthritis MRI Scoring (JAMRIS) system for the knee. Eur Radiol 23:1075–1083CrossRefPubMedGoogle Scholar
  11. 11.
    Hemke R, Tzaribachev N, Nusman CM et al (2017) Magnetic resonance imaging (MRI) of the knee as an outcome measure in juvenile idiopathic arthritis: an OMERACT reliability study on MRI scales. J Rheumatol 44:1224–1230CrossRefPubMedGoogle Scholar
  12. 12.
    Hemke R, van den Berg JM, Nusman CM et al (2018) Contrast-enhanced MRI findings of the knee in healthy children; establishing normal values. Eur Radiol 28:1167–1174CrossRefPubMedGoogle Scholar
  13. 13.
    Guermazi A, Roemer FW, Hayashi D et al (2011) Assessment of synovitis with contrast-enhanced MRI using a whole-joint semiquantitative scoring system in people with, or at high risk of, knee osteoarthritis: the MOST study. Ann Rheum Dis 70:805–811CrossRefPubMedGoogle Scholar
  14. 14.
    Johnson K, Wittkop B, Haigh F et al (2002) The early magnetic resonance imaging features of the knee in juvenile idiopathic arthritis. Clin Radiol 57:466–471CrossRefPubMedGoogle Scholar
  15. 15.
    Resnick CM, Vakilian PM, Kaban LB, Peacock ZS (2016) Quantifying the effect of temporomandibular joint intra-articular steroid injection on synovial enhancement in juvenile idiopathic arthritis. J Oral Maxillofac Surg 74:2363–2369CrossRefPubMedGoogle Scholar
  16. 16.
    Malattia C, Damasio MB, Basso C et al (2012) Novel automated system for magnetic resonance imaging quantification of the inflamed synovial membrane volume in patients with juvenile idiopathic arthritis. Arthritis Care Res 64:1657–1664CrossRefGoogle Scholar
  17. 17.
    Herregods N, Jaremko JL, Baraliakos X et al (2015) Limited role of gadolinium to detect active sacroiliitis on MRI in juvenile spondyloarthritis. Skeletal Radiol 44:1637–1646CrossRefPubMedGoogle Scholar
  18. 18.
    Ording Muller LS, Boavida P, Avenarius D et al (2013) MRI of the wrist in juvenile idiopathic arthritis: erosions or normal variants? A prospective case-control study. Pediatr Radiol 43:785–795CrossRefPubMedGoogle Scholar
  19. 19.
    Nusman CM, Hemke R, Lavini C et al (2017) Dynamic contrast-enhanced magnetic resonance imaging can play a role in predicting flare in juvenile idiopathic arthritis. Eur J Radiol 88:77–81CrossRefPubMedGoogle Scholar
  20. 20.
    Von Kalle T, Stuber T, Winkler P et al (2015) Early detection of temporomandibular joint arthritis in children with juvenile idiopathic arthritis - the role of contrast-enhanced MRI. Pediatr Radiol 45:402–410CrossRefGoogle Scholar
  21. 21.
    Kursunoglu-Brahme S, Riccio T, Weisman MH et al (1990) Rheumatoid knee: role of gadopentetate-enhanced MR imaging. Radiology 176:831–835CrossRefPubMedGoogle Scholar
  22. 22.
    Rieter JF, de Horatio LT, Nusman CM et al (2016) The many shades of enhancement: timing of post-gadolinium images strongly influences the scoring of juvenile idiopathic arthritis wrist involvement on MRI. Pediatr Radiol 46:1562–1567CrossRefPubMedGoogle Scholar
  23. 23.
    Crema MD, Roemer FW, Li L et al (2017) Comparison between semiquantitative and quantitative methods for the assessment of knee synovitis in osteoarthritis using non-enhanced and gadolinium-enhanced MRI. Osteoarthr Cartil 25:267–271CrossRefPubMedGoogle Scholar
  24. 24.
    Hemke R, Nusman CM, van der Heijde DM et al (2015) Frequency of joint involvement in juvenile idiopathic arthritis during a 5-year follow-up of newly diagnosed patients: implications for MR imaging as outcome measure. Rheumatol Int 35:351–357CrossRefPubMedGoogle Scholar
  25. 25.
    Yushkevich PA, Piven J, Hazlett HC et al (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31:1116–1128CrossRefPubMedGoogle Scholar
  26. 26.
    Smith MD, Barg E, Weedon H et al (2003) Microarchitecture and protective mechanisms in synovial tissue from clinically and arthroscopically normal knee joints. Ann Rheum Dis 62:303–307CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Smith MD (2011) The normal synovium. Open Rheumatol J 5:100–106CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Anouk M. Barendregt
    • 1
    • 2
    Email author
  • E. Charlotte van Gulik
    • 1
    • 2
  • Paul F. C. Groot
    • 1
  • Koert M. Dolman
    • 3
    • 4
    • 5
  • J. Merlijn van den Berg
    • 2
  • Amara Nassar-Sheikh Rashid
    • 2
  • Dieneke Schonenberg-Meinema
    • 2
  • Cristina Lavini
    • 1
  • Karen Rosendahl
    • 6
    • 7
  • Robert Hemke
    • 1
  • Taco W. Kuijpers
    • 2
  • Mario Maas
    • 1
  • Charlotte M. Nusman
    • 1
    • 2
  1. 1.Department of Radiology and Nuclear Medicine, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Department of Pediatric Hematology, Immunology, Rheumatology and Infectious Disease, Emma Children’s Hospital, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
  3. 3.Department of Pediatric Rheumatology, ReadeAmsterdamthe Netherlands
  4. 4.Department of Pediatric RheumatologyAmsterdamthe Netherlands
  5. 5.Department of Pediatric RheumatologyAmsterdamthe Netherlands
  6. 6.Section of Pediatric RadiologyHaukeland University HospitalBergenNorway
  7. 7.Department of Clinical Medicine, K1University of BergenBergenNorway

Personalised recommendations