Pediatric Cardiology

, Volume 40, Issue 6, pp 1165–1170 | Cite as

NT-proBNP as an Early Marker of Diastolic Ventricular Dysfunction in Very-Low-Birth-Weight Infants

  • Pamela Zafra-RodríguezEmail author
  • Paula Méndez-Abad
  • Simón P. Lubián-López
  • Isabel Benavente-Fernández
Original Article


The objective is to examine the correlation between plasma levels of N-terminal pro-brain natriuretic peptide (NT-proBNP) and tissue Doppler imaging (TDI) echocardiographic parameters in the first 28 days of life in very-low-birth-weight infants (VLBWI). VLBWI admitted to the Neonatal Intensive Care Unit (NICU) at Hospital Puerta del Mar, Spain, from January 2015 to January 2017 were prospectively enrolled. Weekly determination of plasma NT-proBNP (pg/mL), and echocardiograms were done during the first 28 days of life. 101 preterm infants with a mean GA of 28.85 weeks (± 1.85 SD) and mean birth weight of 1152 g (± 247.4 SD) were included. A total of 483 echocardiograms and 139 NT-proBNP determinations were performed. We found a negative correlation between plasma NT-proBNP levels and diastolic velocities: mitral A′ (ρ = − 0.15, p = 0.04), mitral E′ (ρ = − 0.17, p = 0.02), tricuspid A′ (ρ = − 0.20, p = 0.006), tricuspid E′ (ρ = − 0.24, p = 0.0009). In the first 24 h of life, NT-proBNP levels were strongly correlated with mitral A′ and E′ velocities in patients with no patent ductus arteriosus (PDA) (ρ = − 0.75, p = 0.04). In preterm patients, elevated NT-proBNP levels are related to worse diastolic myocardial function. In the first 24 h, this correlation is much stronger in the absence of PDA.


Biomarkers NT-proBNP Patent ductus arteriosus Preterm infants Tissue Doppler 



B-type natriuretic peptide


Ethylenediaminetetraacetic acid


Left ventricle


Myocardial performance index


Neonatal Intensive Care Unit


N-terminal pro-brain natriuretic peptide


Patent ductus arteriosus


Standard deviation


Shortening fraction


Tissue Doppler imaging


Very-low-birth-weight infants


Author Contributions

Substantial contributions to conception and design: PZ-R, PM-A, IB-F, SL-L. Acquisition of data: PZ-R, PM-A. Analysis and interpretation of data: PZ-R, PM-A, IB-F. Drafting the article: PZ-R, PM-A. Revising the article critically for important intellectual content: IB-F, SL-L. Final approval of the version to be published: PZ-R, PM-A, IB-F, SL-L.


The study was supported by University Hospital Puerta del Mar from Servicio Andaluz de Salud (Junta de Andalucía, Spain).

Compliance with Ethical Standards

Conflict of interest

The authors declare no conflict of interest.

Supplementary material

246_2019_2125_MOESM1_ESM.tif (183 kb)
Supplementary material 1 (TIFF 183 kb)


  1. 1.
    Deshpande P, Baczynski M, McNamara PJ, Jain A (2018) Patent ductus arteriosus: the physiology of transition. Semin Fetal Neonatal Med 23:225–231PubMedCrossRefGoogle Scholar
  2. 2.
    Giesinger RE, McNamara PJ (2016) Hemodynamic instability in the critically ill neonate: an approach to cardiovascular support based on disease pathophysiology. Semin Perinatol 40(3):174–188PubMedCrossRefGoogle Scholar
  3. 3.
    Mertens L, Seri I, Marek J, Arlettaz R, Barker P, McNamara P et al (2011) Targeted neonatal echocardiography in the neonatal intensive care unit: practice guidelines and recommendations for training. Eur J Echocardiogr 12(10):715–736PubMedCrossRefGoogle Scholar
  4. 4.
    Murase M (2016) Assessing ventricular function in preterm infants using tissue Doppler imaging. Expert Rev Med Devices 13(4):325–338PubMedCrossRefGoogle Scholar
  5. 5.
    Evans N, Kluckow M (1996) Early ductal shunting and intraventricular haemorrhage in ventilated preterm infants. Arch Dis Child Fetal Neonatal Ed 75(3):F183–F186PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Kluckow M, Evans N (2000) Low superior vena cava flow and intraventricular haemorrhage in preterm infants. Arch Dis Child Fetal Neonatal 82(3):F188–F194CrossRefGoogle Scholar
  7. 7.
    Bada HS, Korones SB, Perry EH, Arheart KL, Ray JD, Pourcyrous M et al (1990) Mean arterial blood pressure changes in premature infants and those at risk for intraventricular hemorrhage. J Pediatr 117(4):607–614PubMedCrossRefGoogle Scholar
  8. 8.
    Watkins AM, West CR, Cooke RW (1989) Blood pressure and cerebral haemorrhage and ischaemia in very low birthweight infants. Early Hum Dev 19(2):103–110PubMedCrossRefGoogle Scholar
  9. 9.
    Breatnach CR, Franklin O, James AT, McCallion N, El-Khuffash AF (2017) The impact of a hyperdynamic left ventricle on right ventricular function measurements in preterm infants with a patent ductus arteriosus. Arch Dis Child Fetal Neonatal 102:F446–F450CrossRefGoogle Scholar
  10. 10.
    Bussmann N, Breatnach C, Levy PT, McCallion N, Franklin O, El-Khuffash A (2018) Early diastolic dysfunction and respiratory morbidity in premature infants: an observational study. J Perinatol 38:1205–1211PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Breatnach CR, Levy PT, James AT, Franklin O, El-Khuffash AF (2016) Novel echocardiography methods in the functional assessment of the newborn heart. Neonatology 110(4):248–260PubMedCrossRefGoogle Scholar
  12. 12.
    James AT, Corcoran JD, Jain A, McNamara PJ, Mertens L, Franklin O et al (2014) Assessment of myocardial performance in preterm infants less than 29 weeks gestation during the transitional period. Early Hum Dev 90(12):829–835PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Kulkarni M, Gokulakrishnan G, Price J, Fernandes CJ, Leeflang M, Pammi M (2015) Diagnosing significant PDA using natriuretic peptides in preterm neonates: a systematic review. Pediatrics 135(2):e510–e525PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Lopez L, Colan SDD, Frommelt PCC, Ensing GJJ, Kendall K, Younoszai AKK et al (2010) Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr 23(5):465–467PubMedCrossRefGoogle Scholar
  15. 15.
    Parikh R, Negrine RCA, Rasiah SEA (2015) Assessment of myocardial function in preterm infants with patent ductus arteriosus using tissue Doppler imaging. Cardiol Young 25(1):70–75PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Mannarino S, Garofoli F, Mongini E, Cerbo RM, Codazzi AC, Tzialla C et al (2010) BNP concentrations and cardiovascular adaptation in preterm and fullterm newborn infants. Early Hum Dev 86(5):295–298PubMedCrossRefGoogle Scholar
  17. 17.
    Wu TW, Azhibekov T, Seri I (2016) Transitional hemodynamics in preterm neonates: clinical relevance. Pediatr Neonatol 57(1):7–18PubMedCrossRefGoogle Scholar
  18. 18.
    Kadappu KK, Thomas L (2015) Tissue Doppler imaging in echocardiography: value and limitations. Hear Lung Circ 24(3):224–233CrossRefGoogle Scholar
  19. 19.
    Nestaas E, Schubert U, de Boode WP, El-Khuffash A, European Special Interest Group (2018) «Neonatologist Performed Echocardiography» (NPE) Tissue Doppler velocity imaging and event timings in neonates: a guide to image acquisition, measurement, interpretation, and reference values. Pediatr Res 84(Suppl 1):18–29PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    El-Khuffash A, McNamara PJ (2017) Hemodynamic assessment and monitoring of premature infants. Clin Perinatol 44(2):377–393PubMedCrossRefGoogle Scholar
  21. 21.
    Lee A, Nestaas E, Liestol K, Brunvand L, Lindemann R, Fugelseth D (2014) Tissue Doppler imaging in very preterm infants during the first 24 h of life: an observational study. Arch Dis Child Fetal Neonatal Ed 99(1):F64–F69PubMedCrossRefGoogle Scholar
  22. 22.
    Tauber KA, Doyle R, Granina E, Munshi U (2016) B-type natriuretic peptide levels normalise in preterm infants without a patent ductus arteriosus by the fifth postnatal day. Acta Paediatr 105(8):e352–e355PubMedCrossRefGoogle Scholar
  23. 23.
    Farombi-Oghuvbu I, Matthews T, Mayne PD, Guerin H, Corcoran JD (2007) N-terminal pro-B-type natriuretic peptide: a measure of significant patent ductus arteriosus. Arch Dis Child Fetal Neonatal Ed 93(4):F257–F260CrossRefGoogle Scholar
  24. 24.
    Martinovici D, Vanden Eijnden S, Unger P, Najem B, Gulbis B, Maréchal Y (2011) Early NT-proBNP is able to predict spontaneous closure of patent ductus arteriosus in preterm neonates, but not the need of its treatment. Pediatr Cardiol 32(7):953–957PubMedCrossRefGoogle Scholar
  25. 25.
    Buddhe S, Dhuper S, Kim R, Weichbrod L, Mahdi E, Shah N et al (2012) NT-proBNP levels improve the ability of predicting a hemodynamically significant patent ductus arteriosus in very low-birth-weight infants. J Clin Neonatol 1(2):82–86PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    El-Khuffash AF, Amoruso M, Culliton M, Molloy EJ (2007) N-terminal pro-B-type natriuretic peptide as a marker of ductal haemodynamic significance in preterm infants: a prospective observational study. Arch Dis Child Fetal Neonatal Ed 92(5):F421–F422PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Ramakrishnan S, Heung Y, Round J, Morris T, Collinson P, Williams A (2009) Early N-terminal pro-brain natriuretic peptide measurements predict clinically significant ductus arteriosus in preterm infants. Acta Paediatr 98(8):1254–1259PubMedCrossRefGoogle Scholar
  28. 28.
    Occhipinti F, De Carolis MP, De Rosa G, Bersani I, Lacerenza S, Cota F et al (2014) Correlation analysis between echocardiographic flow pattern and N-terminal-pro-brain natriuretic peptide for early targeted treatment of patent ductus arteriosus. J Matern Fetal Neonatal Med 27(17):1800–1804PubMedCrossRefGoogle Scholar
  29. 29.
    Hammerman C, Shchors I, Schimmel MS, Bromiker R, Kaplan M, Nir A (2010) N-terminal-Pro-B-type natriuretic peptide in premature patent ductus arteriosus: a physiologic biomarker, but is it a clinical tool? Pediatr Cardiol 31(1):62–65PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Neonatology“Puerta del Mar” University HospitalCadizSpain

Personalised recommendations