Pediatric Cardiology

, Volume 40, Issue 4, pp 857–864 | Cite as

Computational Identification of Ventricular Arrhythmia Risk in Pediatric Myocarditis

  • Mark J. CartoskiEmail author
  • Plamen P. Nikolov
  • Adityo Prakosa
  • Patrick M. Boyle
  • Philip J. Spevak
  • Natalia A. Trayanova
Original Article


Children with myocarditis have increased risk of ventricular tachycardia (VT) due to myocardial inflammation and remodeling. There is currently no accepted method for VT risk stratification in this population. We hypothesized that personalized models developed from cardiac late gadolinium enhancement magnetic resonance imaging (LGE-MRI) could determine VT risk in patients with myocarditis using a previously-validated protocol. Personalized three-dimensional computational cardiac models were reconstructed from LGE-MRI scans of 12 patients diagnosed with myocarditis. Four patients with clinical VT and eight patients without VT were included in this retrospective analysis. In each model, we incorporated a personalized spatial distribution of fibrosis and myocardial fiber orientations. Then, VT inducibility was assessed in each model by pacing rapidly from 26 sites distributed throughout both ventricles. Sustained reentrant VT was induced from multiple pacing sites in all patients with clinical VT. In the eight patients without clinical VT, we were unable to induce sustained reentry in our simulations using rapid ventricular pacing. Application of our non-invasive approach in children with myocarditis has the potential to correctly identify those at risk for developing VT.


Myocarditis Arrhythmia MRI Computational Electrophysiology 



National Institutes of Health Pioneer Award (DP1-HL123271) to N.A.T., a grant from the Leducq Foundation to N.A.T., and National Institutes of Health T32 Grant (T32-HL-125239-3) to M.J.C.

Compliance with Ethical Standards

Conflict of interest

N.A.T. holds partial ownership of CardioSolv Ablation Technologies LLC. The other authors declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

246_2019_2082_MOESM1_ESM.avi (41.1 mb)
Online Resource 1 Video showing three-dimensional pattern of simulated reentrant ventricular tachycardia in patient 1 following endocardial pacing (AVI 42040 KB)
246_2019_2082_MOESM2_ESM.avi (46.7 mb)
Online Resource 2 Video showing three-dimensional pattern of simulated reentrant ventricular tachycardia in patient 4 following endocardial pacing (AVI 47839 KB)


  1. 1.
    Sagar S, Liu P, Copper L (2012) Myocarditis. Lancet 379:738–747CrossRefGoogle Scholar
  2. 2.
    Dennert Robert C, Harry J, Heymans S (2008) Acute viral myocarditis. Eur Heart J 29(17):2073–2082CrossRefGoogle Scholar
  3. 3.
    Matsuura H, Ichida F, Saji T, Ogawa S, Waki K, Kaneko M, Tahara M, Soga T, Ono Y, Yasukochi S (2016) Clinical features of acute and fulminant myocarditis in Children—2nd nationwide survey by Japanese Society of Pediatric Cardiology and Cardiac Surgery. Circ J 80(11):2362–2368CrossRefGoogle Scholar
  4. 4.
    Butts RJ, Boyle GJ, Deshpande SR, Gambetta K, Knecht KR, Prada-Ruiz CA, Richmond ME, West SC, Lal AK (2017) Characteristics of clinically diagnosed pediatric myocarditis in a contemporary multi-center cohort. Pediatr Cardiol 38(6):1175–1182CrossRefGoogle Scholar
  5. 5.
    Sankar J, Khalil S, Jeeva Sankar M, Kumar D, Dubey N (2011) Short-term outcomes of acute fulminant myocarditis in Children. Pediatr Cardiol 32(7):885–890CrossRefGoogle Scholar
  6. 6.
    Teele SA, Allan CK, Laussen PC, Newburger JW, Gauvreau K, Thiagarajan RR (2011) Management and outcomes in pediatric patients presenting with acute fulminant myocarditis. Pediatrics 158(4):638–643.e1CrossRefGoogle Scholar
  7. 7.
    Saji T, Matsuura H, Hasegawa K, Nishikawa T, Yamamoto E, Ohki H, Yasukochi S, Arakaki Y, Joo K, Nakazawa M (2012) Comparison of the clinical presentation, treatment, and outcome of fulminant and acute myocarditis in children. Circ J 76(5):1222–1228CrossRefGoogle Scholar
  8. 8.
    Feldman AM, McNamara D (2000) Myocarditis. NEJM 343:1388–1398CrossRefGoogle Scholar
  9. 9.
    Li L, Zhang Y, Burke A, Xue A, Zhao Z, Fowler D, Shen Y, Li L (2017) Demographic, clinical and pathological features of sudden deaths due to myocarditis: results from a statewide population-based autopsy study. Forensic Sci Int 272:81–86CrossRefGoogle Scholar
  10. 10.
    Doolan A, Langlois N, Semsarian C (2004) Causes of sudden cardiac death in young Australians. Med J Aust 180:110–112Google Scholar
  11. 11.
    Cooper L, Keren A, Sliwa K, Matsumori A, Mensah GA (2014) The global burden of myocarditis: part 1: a systematic literature review for the global burden of diseases, injuries, and risk factors 2010 study. Glob Heart 9:121–129CrossRefGoogle Scholar
  12. 12.
    Anderson BR, Silver ES, Richmond ME, Lieberman L (2014) Usefulness of arrhythmias as predictors of death and resource utilization in children with myocarditis. J Am Coll Cardiol 144(9):1400–1405CrossRefGoogle Scholar
  13. 13.
    Te AL, Wu T, Lin Y, Chen YY, Chung FP, Chang SL et al (2017) Increased risk of ventricular tachycardia and cardiovascular death in patients with myocarditis during the long-term follow up. Medicine 96:e6633CrossRefGoogle Scholar
  14. 14.
    Xu HF, Ding YJ, Shen YW, Xue AM, Xu HM, Luo CL, Li BX, Liu YL, Zhao ZQ (2012) MicroRNA-1 represses Cx43 expression in viral myocarditis. Mol Cell Biochem 361(1–2):141–148CrossRefGoogle Scholar
  15. 15.
    Tse G, Yeo JM, Chan YW, Lai ETH, Yan BP (2016) What is the arrhythmic substrate in viral myocarditis? Insights from clinical and animal studies. Front Physiol 7:308Google Scholar
  16. 16.
    Steinke K, Sachse F, Ettischer N, Strutz-Seebohm N, Henrion U, Rohrbeck M et al (2013) Coxsackievirus B3 modulates cardiac ion channels. FASEB J 27(10):4108–4121CrossRefGoogle Scholar
  17. 17.
    Park H, Park H, Lee D, Oh S, Lim J, Hwang H et al (2014) Increased phosphorylation of Ca2+ handling proteins as a proarrhythmic mechanism in myocarditis. Circ J 78(9):2292–2301CrossRefGoogle Scholar
  18. 18.
    Zhang A, Zhang H, Wu S (2010) Immunomodulation by atorvastatin upregulates expression gap junction proteins in coxsackievirus B3 (CVB3)-induced myocarditis. Inflamm Res 59(4):255–262CrossRefGoogle Scholar
  19. 19.
    Veeraraghavan R, Salama MD, Poelzing S (2012) Interstitial volume modulates the conduction velocity-gap junction relationship. Am J Physiol Heart Circ Physiol 302:278–286CrossRefGoogle Scholar
  20. 20.
    Andreoletti L, Venteo L, Douche-Aorik F, Canas F et al (2007) Active coxsackieviral B infection is associated with disruption of dystrophin in endomyocardial tissue of patients who died suddenly of acute myocardial infarction. J Am Coll Cardiol 50:2207–2214CrossRefGoogle Scholar
  21. 21.
    Dello Russo A, Casella M, Pieroni M et al (2012) Drug-refractory ventricular tachycardias after myocarditis: endocardial and epicardial radiofrequency ablation. Circ Arrhythm Electrophysiol 5:492–498CrossRefGoogle Scholar
  22. 22.
    Wakisaka Y, Niwano S, Niwano H, Saito J, Yoshida T, Hirasawa S et al (2004) Structural and electrical remodeling in rat acute myocarditis and subsequent heart failure. Cardiovasc Res 63:689–699CrossRefGoogle Scholar
  23. 23.
    Pieroni M, Smaldone C, Bellocci F, Cihakova D (2011) Myocarditis presenting with ventricular arrhythmias: role of electroanatomical mapping-guided endomyocardial biopsy in differential diagnosis. Myocarditis InTech, RijekaGoogle Scholar
  24. 24.
    Bayer JD, Lalani GG, Vigmond EJ, Narayan SM, Trayanova NA (2016) Mechanisms linking electrical alternans and clinical ventricular arrhythmia in human heart failure. Heart Rhythm 13:1922–1931CrossRefGoogle Scholar
  25. 25.
    Friedrich MG, Sechtem U, Schulz-Menger J, Holmvang G, Alakija P, Cooper LT et al (2009) Cardiovascular magnetic resonance in myocarditis: a JACC white paper. J Am Coll Cardiol 53(17):1475–1487CrossRefGoogle Scholar
  26. 26.
    Hales-Kharazmi A, Hirsch N, Kelleman M, Slesnick T, Deshpande SR (2017) Utility of cardiac MRI in paediatric myocarditis. Cardiol Young 14:1–9Google Scholar
  27. 27.
    Lurz P, Luecke C, Eitel I, Fhrenbach F, Frank C, Grothoff M et al (2016) Comprehensive cardiac magnetic resonance imaging in patients with suspected myocarditis the MyoRacerTrial. J Am Coll Cardiol 67(15):1800–1811CrossRefGoogle Scholar
  28. 28.
    Mavrogeni S, Bratis K, Georgakopoulos D, Karanasios E, Kolovou G, Pavlides G, Papadopoulos G (2012) Evaluation of myocarditis in a pediatric population using cardiovascular magnetic resonance and endomyocardial biopsy. Int J Cardiol 160(3):192–195CrossRefGoogle Scholar
  29. 29.
    Brighenti M, Donti A, Giulia Gagliardi M, Maschietto N, Marini D, Lombardi M et al (2016) Endomyocardial biopsy safety and clinical yield in pediatric myocarditis: an Italian perspective. Catheter Cardiovasc Interv 87(4):762–767CrossRefGoogle Scholar
  30. 30.
    Banka P, Robinson JD, Uppu SC, Harris MA, Hasbani K, Lai WW et al (2015) Cardiovascular magnetic resonance techniques and findings in children with myocarditis: a multicenter retrospective study. J Cardiovasc Magn Reson 7(1):96CrossRefGoogle Scholar
  31. 31.
    Sachdeva S, Song X, Dham N et al (2015) Analysis of clinical parameters and cardiac magnetic resonance imaging as predictors of outcome in pediatric myocarditis. J Am Coll Cardiol 115(4):499–504CrossRefGoogle Scholar
  32. 32.
    Satoh H, Sano M, Suwa K et al (2014) Distribution of late gadolinium enhancement in various types of cardiomyopathies: significance in differential diagnosis, clinical features and prognosis. World J Cardiol 6:585–601CrossRefGoogle Scholar
  33. 33.
    Mavrogeni S, Petrou E, Kolovou G, Theodorakis G, Iliodromitis E (2013) Prediction of ventricular arrhythmias using cardiovascular magnetic resonance. Eur Heart J Cardiovasc Imaging 14(6):518–525CrossRefGoogle Scholar
  34. 34.
    Eichhorn C, Murthy VL, Agarwal V, Kaneko K, Cuddy S, Aghayev A et al (2017) Prognostic value of cardiac magnetic resonance tissue characterization in risk stratifying patients with suspected myocarditis. J Am Coll Cardiol 70(16):1964–1976CrossRefGoogle Scholar
  35. 35.
    Grün S, Schumm J, Greulich S, Wagner A, Schneider S, Bruder O et al (2012) Long-term follow-up of biopsy proven viral myocarditis: predictors of mortality and incomplete recovery. J Am Coll Cardiol 59(18):1604–1615CrossRefGoogle Scholar
  36. 36.
    Teele SA, Allan CK, Laussen PC et al (2011) Management and outcomes in pediatric patients presenting with acute fulminant myocarditis. Pediatrics 158(4):638–643CrossRefGoogle Scholar
  37. 37.
    Miyake CY, Teele SA, Chen L et al (2014) In-hospital arrhythmia development and outcomes in pediatric patients with acute myocarditis. J Am Coll Cardiol 133(3):535–540CrossRefGoogle Scholar
  38. 38.
    Casadonte JR, Mazwi ML, Gambetta KE, Palac HL, McBride ME, Eltayeb OM et al (2017) Risk factors for cardiac arrest or mechanical circulatory support in children with fulminant myocarditis. Pediatr Cardiol 38(1):128–134CrossRefGoogle Scholar
  39. 39.
    Puelz C, Acosta S, Riviere B, Penny DJ, Brady KM, Rusin CG (2017) A computational study of the Fontan circulation with fenestration or hepatic vein exclusion. Comput Biol Med 89:405–418CrossRefGoogle Scholar
  40. 40.
    Ni MW, Prather RO, Rodriguez G, Quinn R, Divo E, Fogel M et al (2018) Computational investigation of a self-powered fontan circulation. Cardiovasc Eng Tecnol. Google Scholar
  41. 41.
    Slesnick TC (2017) Role of computational modelling in planning and executing interventional procedures for congenital heart disease. Can J Cardiol 33:1159–1170CrossRefGoogle Scholar
  42. 42.
    Arevalo HJ, Vadakkumpadan F, Guallar E, Jebb A, Malamas P, Wu KC, Trayanova NA (2016) Arrhythmia risk stratification of patients after myocardial infarction using personalized heart models. Nat Commun 7:11437CrossRefGoogle Scholar
  43. 43.
    Deng D, Arevalo HJ, Prakosa A, Callans DJ, Trayanova NA (2016) A feasibility study of arrhythmia risk prediction in patients with myocardial infarction and preserved ejection fraction. Europace 18(suppl 4):iv60–iv66. CrossRefGoogle Scholar
  44. 44.
    Trayanova NA, Pashakhanloo F, Wu KC, Halperin HR (2017) Imaging-based simulations for predicting sudden death and guiding ventricular tachycardia ablation. Circ Arrhythm Electrophysiol 10(7):e004743. CrossRefGoogle Scholar
  45. 45.
    Schmidt A, Azevedo CF, Cheng A, Gupta SN, Bluemke DA, Foo TK et al (2007) Infarct tissue heterogeneity by magnetic resonance imaging identifies enhanced cardiac arrhythmia susceptibility in patients with left ventricular dysfunction. Circulation 115:2006–2014CrossRefGoogle Scholar
  46. 46.
    Prakosa A, Malamas P, Zhang S, Pashakhanloo F, Arevalo H, Herzka DA et al (2014) Methodology for image-based reconstruction of ventricular geometry for patient-specific modeling of cardiac electrophysiology. Prog Biophys Mol Biol 115:226–234CrossRefGoogle Scholar
  47. 47.
    Ukwatta E, Arevalo H, Li K, Yuan J, Qiu W, Malamas P et al (2016) Myocardial infarct segmentation from magnetic resonance images for personalized modeling of cardiac electrophysiology. IEEE Trans Med Imaging 35(6):1408–1419CrossRefGoogle Scholar
  48. 48.
    Deng DD, Arevalo H, Pashakhanloo F, Prakosa A, Ashikaga H, McVeigh E et al (2015) Accuracy of prediction of infarct-related circuits from image-based models reconstructed form low and high resolution MRI. Front Physiol 6:282. CrossRefGoogle Scholar
  49. 49.
    Prassl A, Kickinger F, Ahammer H, Grau V, Schneider JE, Hofer E et al (2009) Automatically generated, anatomically accurate meshes for cardiac electrophysiology problems. IEEE Trans Biomed 56(5):1318–1330CrossRefGoogle Scholar
  50. 50.
    Bayer JD, Blake RC, Plank G, Trayanova NA (2012) A novel rule-based algorithm for assigning myocardial fiber orientation to computational heart models. Ann Biomed Eng 40(10):2243–2254CrossRefGoogle Scholar
  51. 51.
    ten Tusscher KHWJ, Noble D, Noble PJ, Panfilov AV (2004) A model for human ventricular tissue. Am J Physiol Heart Circ Physiol 286(4):H1573–H1589CrossRefGoogle Scholar
  52. 52.
    Vigmond EJ, Huhges M, Plank G, Leon LJ (2003) Computational tools for modeling electrical activity in cardiac tissue. J Electocardiol 3:69–74CrossRefGoogle Scholar
  53. 53.
    Vigmond EJ, dos Santos RW, Prassl AJ, Deo M, Plank G (2007) Solvers for the cardiac biodomain equations. Prog Biophys Mol Biol 96(1–3):3–18Google Scholar
  54. 54.
    Prakosa A, Arevalo HJ, Deng D, Boyle PM, Nikolov PP, Ashikaga H et al (2018) Personalized virtual-heart technology for guiding the ablation of infarct-related ventricular tachycardia. Nat Biomed Eng 2:732–740CrossRefGoogle Scholar
  55. 55.
    Cerqueira MD, Weissman NJ, Dilsizian V, Jacobs AK, Kaul S, Laskey WK et al (2002) Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart: a statement for healthcare professionals from the cardiac imaging committee of the council on clinical cardiology of the American Heart Association. Circulation 105:539–542CrossRefGoogle Scholar
  56. 56.
    Vadakkumpadan F, Trayanova N, Wu KC (2014) Image-based left ventricular shape analysis for sudden cardiac death risk stratification. Heart Rhythm 11(10):1693–1700CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Divison of Pediatric Cardiology, Department of PediatricsJohns Hopkins University School of MedicineBaltimoreUSA
  2. 2.Institute for Computational Medicine and Department of Biomedical EngineeringJohns Hopkins UniversityBaltimoreUSA
  3. 3.Division of Cardiology, Department of MedicineJohns Hopkins University School of MedicineBaltimoreUSA

Personalised recommendations