Pediatric Cardiology

, Volume 40, Issue 2, pp 283–301 | Cite as

Reference Intervals and Percentile Curves of Echocardiographic Left Ventricular Mass, Relative Wall Thickness and Ejection Fraction in Healthy Children and Adolescents

  • Alejandro DíazEmail author
  • Yanina Zócalo
  • Daniel Bia
Original Article


Despite the clinical utility of echocardiography to measure cardiac target organ injury (TOI) there are scarcities of data about the reference intervals (RIs) and percentiles of left ventricular (LV) mass (LVM) and derived indexes (LVMI and LVMI2.7), relative wall thickness (LVRWT) and ejection fraction (LVEF) from population-based studies in children and adolescents. The aim of this study was to generate reference intervals RIs of LVM and derived indexes (LVMI and LVMI2.7), LVRWT, and LVEF obtained in healthy children, adolescents, and young adults from a South-American population. Echocardiographic studies were obtained in 1096 healthy subjects (5–24 years). Age and sex-specific RIs of LVM, LVMI, LVMI2.7, LVRWT, and LVEF were generated using parametric regression based on fractional polynomials. After covariate analysis (i.e., adjusting by age, body surface area) specific sex-specific RIs were evidenced as necessaries. Age and sex-specific 1st, 2.5th, 5th, 10th, 25th, 50th, 75th, 90th, 95th, 97.5th, and 99th percentile and curves were reported and compared with previously reported RIs. RIs showed high concordance and complementarity with what was previously reported for the population of North-American children (0–18 years old). In conclusion, in children and adolescents the interpretation of the LVM, LVMIs, LVRWT, and LVEF RIs requires sex-related RIs. This study provides the largest Argentinean database concerning RIs and percentile curves of LVM, LVMIs, LVRWT, and LVEF as markers of cardiac TOI obtained in healthy children and adolescents. These data are valuable in that they provide RIs values with which data of populations of children, adolescents can be compared.


Left ventricular mass Echocardiography Adolescents Epidemiology Pediatrics Percentiles 


Compliance with Ethical Standards

Conflict of interest

All authors declare that they have no conflict on interest.

Supplementary material

246_2018_2000_MOESM1_ESM.pdf (768 kb)
Supplementary material 1 (PDF 768 KB)


  1. 1.
    Lurbe E, Agabiti-Rosei E, Criuckshank JK, Dominiczak E, Erdine S, Hirth A et al (2016) European Society of Hypertension guidelines for the management of high blood pressure in children and adolescents. J Hypertens 34(10):1887–1920CrossRefPubMedGoogle Scholar
  2. 2.
    Woroniecki RP, Kahnauth A, Panesar LE, Supe-Markovina K (2017) Left ventricular hypertrophy in pediatric hypertension: a mini review. Front Pediatr 5:101CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Kannel WB, Gordon T, Castelli WP, Margolis JR (1970) Electrocardiographic left ventricular hypertrophy and risk of coronary heart disease. Ann Intern Med 72:813–822CrossRefPubMedGoogle Scholar
  4. 4.
    Killian L, Simpson JM, Savis A, Rawlins D, Sinha MD (2010) Electrocardiography is a poor screening test to detect left ventricular hypertrophy in children. Arch Dis Child 95:832–836CrossRefPubMedGoogle Scholar
  5. 5.
    Bratincsak A, Williams M, Kimata C, Perry JC (2015) The electrocardiogram is a poor diagnostic tool to detect left ventricular hypertrophy in children: a comparison with echocardiographic assessment of left ventricular mass. Congenit Heart Dis 10:E164–E171CrossRefPubMedGoogle Scholar
  6. 6.
    Ramaswamy P, Patel E, Fahey M, Mahgerefteh J, Lytrivi ID, Kupferman JC et al (2009) Electrocardiographic predictors of left ventricular hypertrophy in pediatric hypertension. J Pediatr 154(1):106–110CrossRefPubMedGoogle Scholar
  7. 7.
    Flynn JT, Kaelber DC, Baker-Smith CM, Blowey D, Carroll AE, Daniels SR et al (2017) Clinical practice guideline for screening and management of high blood pressure in children and adolescents. Pediatrics 140(3):e20171904CrossRefPubMedGoogle Scholar
  8. 8.
    Sethna CB, Leisman DE (2016) Left ventricular hypertrophy in children with hypertension: in search of a definition. Curr Hypertens Rep 18(8):65. CrossRefPubMedGoogle Scholar
  9. 9.
    Kavey RE (2013) Left ventricular hypertrophy in hypertensive children and adolescents: predictors and prevalence. Curr Hypertens Rep 15(5):453–457CrossRefPubMedGoogle Scholar
  10. 10.
    Lopez L, Colan SD, Frommelt PC, Ensing GJ, Kendall K, Younoszai AK et al (2010) Recommendations for quantification methods during the performance of a pediatric echocardiogram: a report from the Pediatric Measurements Writing Group of the American Society of Echocardiography Pediatric and Congenital Heart Disease Council. J Am Soc Echocardiogr 23(5):465–495CrossRefPubMedGoogle Scholar
  11. 11.
    Echocardiographic Normal Ranges Meta-Analysis of the Left Heart Collaboration (2015) Ethnic-specific normative reference values for echocardiographic LA and LV Size, LV mass, and systolic function: the EchoNoRMAL Study. JACC Cardiovasc Imaging 8(6):656–665CrossRefGoogle Scholar
  12. 12.
    Qureshi WT, Leigh JA, Swett K, Dharod A, Allison MA, Cai J et al (2016) Comparison of echocardiographic measures in a Hispanic/Latino population with the 2005 and 2015 American Society of Echocardiography Reference Limits (The Echocardiographic Study of Latinos). Circ Cardiovasc Imaging 9(1):e003597CrossRefPubMedGoogle Scholar
  13. 13.
    de Simone G, Devereux RB, Daniels SR, Koren MJ, Meyer RA, Laragh JH (1995) Effect of growth on variability of left ventricular mass: assessment of allometric signals in adults and children and their capacity to predict cardiovascular risk. J Am Coll Cardiol 25(5):1056–1062CrossRefPubMedGoogle Scholar
  14. 14.
    Khoury PR, Mitsnefes M, Daniels SR, Kimball TR (2009) Age-specific reference intervals for indexed left ventricular mass in children. J Am Soc Echocardiogr 22:709–714CrossRefPubMedGoogle Scholar
  15. 15.
    Foster BJ, Khoury PR, Kimball TR, Mackie AS, Mitsnefes M (2016) New reference centiles for left ventricular mass relative to lean body mass in children. J Am Soc Echocardiogr 29(5):441–447CrossRefPubMedGoogle Scholar
  16. 16.
    Diaz A, Tringler M, Wray S, Ramirez AJ, Cabrera Fischer EI (2018) The effects of age on pulse wave velocity in untreated hypertension. J Clin Hypertens (Greenwich) 20(2):258–265CrossRefGoogle Scholar
  17. 17.
    Diaz A, Zocalo Y, Bia D, Sabino F, Rodriguez V, Cabrera-Fischer E (2018) Reference intervals of aortic pulse wave velocity assessed with an oscillometric device in healthy children and adolescents from Argentina. Clin Exp Hypertens 9:1–12. Google Scholar
  18. 18.
    Diaz A, Zócalo Y, Bia D, Wray S, Fischer EC (2018) Reference intervals and percentiles for carotid-femoral pulse wave velocity in a healthy population aged between 9 and 87 years. J Clin Hypertens (Greenwich) 20(4):659–671CrossRefGoogle Scholar
  19. 19.
    Stang J, Story M (2005) Chapter 1: adolescent growth and development. In: Stang J, Story T (eds) Guidelines for adolescent nutrition services.
  20. 20.
    Stützle W, Gasser T, Molinari L, Largo RH, Prader A, Huber PJ (1980) Shape-invariant modelling of human growth. Ann Hum Biol 7(6):507–528CrossRefPubMedGoogle Scholar
  21. 21.
    Mancia G, Fagard R, Narkiewicz K, Redón J, Zanchetti A, Bohm M et al (2013) 2013 ESH/ESC Guidelines for the management of arterial hypertension”. The Task Force for the management of arterial hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC). J Hypertens 31:1281–1357CrossRefPubMedGoogle Scholar
  22. 22.
    Srinivasan SR, Frontini MG, Xu J, Berenson GS (2006) Utility of childhood non-highdensity lipoprotein cholesterol levels in predicting adult dyslipidemia and other cardiovascular risks: the Bogalusa Heart Study. Pediatrics 118(1):201–206CrossRefPubMedGoogle Scholar
  23. 23.
    Lang RM, Badano LP, Mor-Avi V, Afilalo J, Armstrong A, Ernande L et al (2015) Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging 16(3):233–270CrossRefPubMedGoogle Scholar
  24. 24.
    Devereux RB, Alonso DR, Lutas EM, Gottlieb GJ, Campo E, Sachs I et al (1986) Echocardiographic assessment of left ventricular hipertrophy: comparison to necropsy findings. Am J Cardiol 57:450–458CrossRefPubMedGoogle Scholar
  25. 25.
    Royston P, Wright E (1998) A method for estimating age-specific reference intervals (‘normal ranges’) based on fractional polynomials and exponential transformation. J R Statist Soc A 161:79-101CrossRefGoogle Scholar
  26. 26.
    Bossuyt J, Engelen L, Ferreira I, Stehouwer CD, Boutouyrie P, Laurent S et al (2015) Reference values for local arterial stiffness. Part B: femoral artery. J Hypertens 33:1997-2009CrossRefPubMedGoogle Scholar
  27. 27.
    Bellera CA, Hanley JA (2007) A method is presented to plan the required sample size when estimating regression-based reference limits. J Clin Epidemiol 60:610-615CrossRefGoogle Scholar
  28. 28.
    Lumley T, Diehr P, Emerson S, Chen L (2002) The importance of the normality assumption in large public health data sets. Annu Rev Public Health 23:151–169CrossRefPubMedGoogle Scholar
  29. 29.
    Chinali M, Emma F, Esposito C, Rinelli G, Franceschini A, Doyon A et al (2016) Left ventricular mass indexing in infants, children, and adolescents: a simplified approach for the identification of left ventricular hypertrophy in clinical practice. J Pediatr 170:193–198CrossRefPubMedGoogle Scholar
  30. 30.
    Levy D, Garrison RJ, Savage DD, Kannel WB, Castelli WP (1990) Prognostic implications of echocardiographically determined left ventricular mass in the Framingham Heart Study. N Engl J Med 322:1561–1566CrossRefPubMedGoogle Scholar
  31. 31.
    Goble MM, Mosteller M, Moskowitz WB, Schieken RM (1992) Sex differences in the determinants of left ventricular mass in childhood. Med Coll Virginia Twin Study Circ 85(5):1661–1665Google Scholar
  32. 32.
    Kuch B, Hense HW, Gneiting B, Döring A, Muscholl M, Bröckel U et al (2000) Body composition and prevalence of left ventricular hypertrophy. Circulation 102(4):405–410CrossRefPubMedGoogle Scholar
  33. 33.
    Escudero EM, Pinilla OA, Salazar MR, Ennis IL (2012) Sex-related difference in left ventricular mass in nonhypertensive young adults: role of arterial pressure. Can J Cardiol 28(4):464–470CrossRefPubMedGoogle Scholar
  34. 34.
    Daniels SR, Loggie JM, Khoury P, Kimball TR (1998) Left ventricular geometry and severe left ventricular hypertrophy in children and adolescents with essential hypertension. Circulation 97:1907–1911CrossRefPubMedGoogle Scholar
  35. 35.
    Hanevold C, Waller J, Daniels S, Portman R, Sorof J (2004) The effects of obesity, gender, and ethnic group on left ventricular hypertrophy and geometry in hypertensive children: a collaborative study of the International Pediatric Hypertension Association. Pediatrics 113(2):328–333CrossRefPubMedGoogle Scholar
  36. 36.
    Sharma S, Maron BJ, Whyte G, Firoozi S, Elliott PM, McKenna WJ (2002) Physiologic limits of left ventricular hypertrophy in elite junior athletes: relevance to differential diagnosis of athlete’s heart and hypertrophic cardiomyopathy. J Am Coll Cardiol 40(8):1431–1436CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Instituto de Investigación en Ciencias de la SaludUNICEN – CONICETTandilArgentina
  2. 2.Physiology Department, School of Medicine, Centro Universitario de Investigación, Innovación y Diagnóstico Arterial (CUiiDARTE)Republic UniversityMontevideoUruguay

Personalised recommendations