Pediatric Cardiology

, Volume 40, Issue 1, pp 47–52 | Cite as

Cortisol Response in Children After Second Cardiopulmonary Bypass

  • Harish Bangalore
  • Paul A. Checchia
  • Elena C. Ocampo
  • Jeffrey S. Heinle
  • Charles G. Minard
  • Lara S. ShekerdemianEmail author
Original Article


A surge in cortisol levels is seen after surgery with cardiopulmonary bypass (CPB). Based on evidence of attenuation of the cortisol response to repeated stress in other settings, we hypothesized that the magnitude of cortisol increase in children after a second exposure to CPB would be reduced. Serial cortisol levels were measured at three time points after each CPB: immediately (day 0), on the first morning (day 1), and second morning (day 2). Forty-six children underwent two surgeries with CPB during the study period. The mean age (standard deviation) at first and second surgery was 3.5 (6.3) months and 10.4 (9.9) months, respectively. Cortisol levels at the first surgery were 109 (105) µg/dl, 29 (62) µg/dl, and 17 (12) µg/dl on day 0, 1, and 2, respectively; similarly at second surgery, it was 61 (57) µg/dl on day 0 to 20 (16) µg/dl and 11 (10) µg/dl on day 1 and 2, respectively. After log-transformation and adjusting for time interval between surgeries, cortisol levels at the second surgery were lower by 42% on day 0 (p = 0.02), and 46% lower on day 2 (p = 0.02). A second exposure to CPB in children with congenital heart disease is associated with an attenuated cortisol release.


Compliance with Ethical Standards

Conflict of interest

All the authors and co-authors declare that there is no conflict of interest in the study.

Ethical Approval

All applicable international, national, and/or institutional guidelines were followed.

Informed Consent

Informed consent was obtained from all individual participants included in the study.


  1. 1.
    Plumpton KR, Anderson BJ, Beca J (2010) Thyroid hormone and cortisol concentrations after congenital heart surgery in infants younger than 3 months of age. Intensive Care Med 36:321–328CrossRefGoogle Scholar
  2. 2.
    Winterhalter M, Brandl N, Rahe-Meyer N, Osthaus A, Hecker H, Hagl C, Adams HA, Piepenbrock S (2008) Endocrine stress response and inflammatory activation during CABG surgery. A randomized trail comparing remifentanil infusion to intermittent fentanyl. Eur J Anaesthesiol 25(4):326–335CrossRefGoogle Scholar
  3. 3.
    Bangalore H, Ocampo EC, Rodriguez LM, Minard CG, Checchia PA, Heinle JS, Shekerdemian LS (2014) Serum cortisol and early postoperative outcome after stage-1 palliation for hypoplastic left heart syndrome. Pediatr Crit Care Med 15(3):211–218CrossRefGoogle Scholar
  4. 4.
    Hoda MR, El-Achkar H, Schmitz E, Scheffold T, Vetter HO, De Simone R (2006) Systemic stress hormone response in patients undergoing open heart surgery with or without cardiopulmonary bypass. Ann Thorac Surg 82:2179–2186CrossRefGoogle Scholar
  5. 5.
    Gajarski RJ, Stefanelli CB, Graziano JN, Kaciroti N, Charpie JR, Vazquez D (2010) Adrenocortical response in infants undergoing cardiac surgery with cardiopulmonary bypass and circulatory arrest. Pediatr Crit Care Med 11:44–51CrossRefGoogle Scholar
  6. 6.
    Warnes CA (2005) The adult with congenital heart disease. Born to be bad? J Am Coll Cardiol 46:1–8CrossRefGoogle Scholar
  7. 7.
    Society of Thoracic Surgery Congenital Cardiac Surgery Database, January 2002 to December 2006 project manager Sean O Bien, Duke Clinical Research Institute, 2008Google Scholar
  8. 8.
    Rabasa C, Delgado-Morales R, Gómez-Román A, Nadal R, Armario A (2013) Adaptation of the pituitary-adrenal axis to daily repeated forced swim exposure in rats is dependent on the temperature of water. Stress 16(6):698–705CrossRefGoogle Scholar
  9. 9.
    Rabasa C, Muñoz-Abellán C, Daviu N, Nadal R, Armario A (2011) Repeated exposure to immobilization or two different footshock intensities reveals differential adaptation of the hypothalamic-pituitary-adrenal axis. Physiol Behav 103(2):125–133CrossRefGoogle Scholar
  10. 10.
    Bhatnagar S, Vining C, Iyer V, Kinni V (2006) Changes in hypothalamic-pituitary-adrenal function, body temperature, body weight and food intake with repeated social stress exposure in rats. J Neuroendocrinol 18(1):13–24CrossRefGoogle Scholar
  11. 11.
    Bhatnagar S, Huber R, Nowak N, Trotter P (2002) Lesions of the posterior paraventricular thalamus block habituation of hypothalamic-pituitary-adrenal responses to repeated restraint. J Neuroendocrinol 14(5):403–410CrossRefGoogle Scholar
  12. 12.
    Cole MA, Kalman BA, Pace TW, Topczewski F, Lowrey MJ, Spencer RL (2002) Selective blockade of the mineralocorticoid receptor impairs hypothalamic-pituitary-adrenal axis expression of habituation. J Neuroendocrinol 12(10):1034–1042CrossRefGoogle Scholar
  13. 13.
    Girotti M, Pace TW, Gaylord RI, Rubin BA, Herman JP, Spencer RL (2006) Habituation to repeated restraint stress is associated with lack of stress-induced c-fos expression in primary sensory processing areas of the rat brain. Neuroscience 138(4):1067–1081CrossRefGoogle Scholar
  14. 14.
    Grissom N, Iyer V, Vining C, Bhatnagar S (2007) The physical context of previous stress exposure modifies hypothalamic-pituitary-adrenal responses to a subsequent homotypic stress. Horm Behav 51(1):95–103CrossRefGoogle Scholar
  15. 15.
    Jenkins KJ, Gauvreau K, Newburger JW, Spray TL, Moller JH, Iezzoni LI (2002) Consensus-based method for risk adjustment for surgery for congenital heart disease. J Thorac Cardiovasc Surg 123(1):110–118CrossRefGoogle Scholar
  16. 16.
    Dal-Zotto S, Martí O, Armario A (2002) Is repeated exposure to immobilization needed to induce adaptation of the hypothalamic-pituitary-adrenal axis? Influence of adrenal factors. Behav Brain Res 129(1–2):187–195CrossRefGoogle Scholar
  17. 17.
    Thompson RF, Spencer WA (1966) Habituation: a model phenomenon for the study of neuronal substrates of behavior. Psychol Rev 73(1):16–43CrossRefGoogle Scholar
  18. 18.
    Rankin CH, Abrams T, Barry RJ, Bhatnagar S, Clayton DF, Colombo J, Coppola G, Geyer MA, Glanzman DL, Marsland S, McSweeney FK, Wilson DA, Wu CF, Thompson RF (2009) Habituation revisited: an updated and revised description of the behavioral characteristics of habituation. Neurobiol Learn Mem 92(2):135–138CrossRefGoogle Scholar
  19. 19.
    Meerson F, Pozharov V, Minyailenko T (1994) Super resistance against hypoxia after preliminary adaptation to repeated stress. J Appl Physiol 76(5):1856–1861CrossRefGoogle Scholar
  20. 20.
    Kanizsai P, Vamos Z, Solymár M, Garami A, Szelényi Z (2010) Effects of repeated surgical stress on daily changes of body core temperature in mice. Acta Physiol Hung 97(2):201–207CrossRefGoogle Scholar
  21. 21.
    Strackx E, Van den Hove DL, Prickaerts J, Zimmermann L, Steinbusch HW, Blanco CE, Gavilanes AW, Vles JS (2010) Fetal asphyctic preconditioning protects against perinatal asphyxia-induced behavioral consequences in adulthood. Behav Brain Res 208(2):343–351CrossRefGoogle Scholar
  22. 22.
    Grunau RE, Tu TM, Whitfield MF, Oberlander TF, Weinberg J, Yu W, Thiessen P, Gosse G, Scheifele D (2010) Cortisol behavior, and heart rate reactivity to immunization pain at 4 months corrected age in infants born very preterm. Clin J Pain 26:698–704Google Scholar
  23. 23.
    Grunau RE, Holsti L, Haley DW, Oberlander T, Weinberg J, Solimano A, Whitfield MF, Fitzgerald C, Yu W (2005) Neonatal procedural pain exposure predicts lower cortisol and behavior reactivity in preterm infants in the NICU. Pain 113(3):293–300CrossRefGoogle Scholar
  24. 24.
    Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136CrossRefGoogle Scholar
  25. 25.
    Makowski P, Boehm O, Goelz L, Haesner AL, Ehrentraut H, Bauerfeld K, Tran N, Zacharowski K, Weisheit C, Langhoff P, Schwederski M, Hilbert T, Klaschik S, Hoeft A, Baumgarten G, Meyer R, Knuefermann P (2013) Pre-conditioning with synthetic CpG-oligonucletides attenuates myocardial ischemia/reperfusion injury via IL-10 up-regulation. Basic Res Cardiol 108(5):376CrossRefGoogle Scholar
  26. 26.
    Vlassaks E, Strackx E, Vles JS, Nikiforou M, Martinez-Martinez P, Kramer BW, Gavilanes AW (2013) Fetal asphyxic preconditioning modulates the acute cytokine response thereby protecting against perinatal asphyxia in neonatal rats. J Neuroinflamm 10:14CrossRefGoogle Scholar
  27. 27.
    Czigany Z, Turoczi Z, Ónody P, Harsányi L, Lotz G, Hegedüs V, Szijártó A (2013) Remote ischemic preconditioning protects the liver from ischemia-reperfusion injury. J Surg Res 185(2):605–613CrossRefGoogle Scholar
  28. 28.
    Zhou W, Zeng D, Chen R, Liu J, Yang G, Liu P, Zhou X (2010) Limb ischemic preconditioning reduces heart and lung injury after an open heart operation in infants. Pediatr Cardiol 31(1):22–29CrossRefGoogle Scholar
  29. 29.
    Li G, Labruto F, Sirsjö A, Chen F, Vaage J, Valen G (2004) Myocardial protection by remote preconditioning: the role of nuclear factor kappa-B p105 and inducible nitric oxide synthase. Eur J Cardiothorac Surg 26(5):968–973CrossRefGoogle Scholar
  30. 30.
    Huerta L, Rancan L, Simón C, Isea J, Vidaurre E, Vara E, Garutti I, González-Aragoneses F (2013) Ischaemic preconditioning prevents the liver inflammatory response to lung ischaemia/reperfusion in a swine lung autotransplant model. Eur J Cardiothorac Surg 43(6):1194–1201CrossRefGoogle Scholar
  31. 31.
    Ottani F, Galvani M, Ferrini D, Sorbello F, Limonetti P, Pantoli D, Rusticali F (1995) Prodromal angina limits infarct size: a role for ischemic preconditioning. Circulation 91(2):291–297CrossRefGoogle Scholar
  32. 32.
    Kloner RA1, Shook T, Przyklenk K, Davis VG, Junio L, Matthews RV, Burstein S, Gibson M, Poole WK, Cannon CP (1995) Previous angina alters in-hospital outcome in TIMI 4: a clinical correlate to preconditioning? Circulation 91(1):37–45CrossRefGoogle Scholar
  33. 33.
    Przyklenk K, Bauer B, Ovize M, Kloner RA, Whittaker P (1993) Regional ischemic ‘preconditioning’ protects remote virgin myocardium from subsequent sustained coronary occlusion. Circulation 87(3):893–899CrossRefGoogle Scholar
  34. 34.
    Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb SA, Beale RJ, Vincent JL, Moreno R, Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup (2013) Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup. Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41:580–637CrossRefGoogle Scholar
  35. 35.
    Dickerson H, Cooper DS, Checchia PA, Nelson DP (2008) Endocrinal complications associated with the treatment of patients with congenital cardiac disease: consensus definitions from the Multi-Societal Database Committee for Pediatric and Congenital Heart Disease. Cardiol Young 18(Suppl 2):256–264CrossRefGoogle Scholar
  36. 36.
    Morland RH, Novejarque A, Huang W, Wodarski R, Denk F, Dawes JD, Pheby T, McMahon SB, Rice AS (2015) Short-term effect of acute and repeated urinary bladder inflammation on thigmotactic behaviour in the laboratory rat. F1000Research 4:109CrossRefGoogle Scholar
  37. 37.
    Pappachan VJ, Brown KL, Tibby SM (2017) Paediatric cardiopulmonary bypass surgery: the challenges of heterogeneity and identifying a meaningful endpoint for clinical trials. Intensive Care Med 43:113–115CrossRefGoogle Scholar
  38. 38.
    Gibbison B, Spiga F, Walker J, Russell G, Stevenson K, Kershaw Y, Zhao Z, Henley D, Angelini G, Lightman S (2015) Dynamic pituitary-adrenal interactions in response to cardiac surgery. Crit Care Med 43(4):791–800CrossRefGoogle Scholar
  39. 39.
    Powell B, Nason G, Angelini G, Lightman S, Gibbison B (2017) Optimal sampling frequency of serum cortisol concentrations after cardiac surgery. Crit Care Med 45(10):e1103–e1104CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Harish Bangalore
    • 1
  • Paul A. Checchia
    • 1
  • Elena C. Ocampo
    • 2
  • Jeffrey S. Heinle
    • 3
  • Charles G. Minard
    • 4
  • Lara S. Shekerdemian
    • 1
    Email author
  1. 1.Department of Pediatrics, Section of Critical Care, Texas Children’s HospitalBaylor College of MedicineHoustonUSA
  2. 2.Department of Pediatrics, Section of Cardiology, Texas Children’s HospitalBaylor College of MedicineHoustonUSA
  3. 3.Division of Congenital Heart Surgery, Michael E. DeBakey Department of Surgery, Texas Children’s HospitalBaylor College of MedicineHoustonUSA
  4. 4.Dan L. Duncan Institute for Clinical and Translational ResearchBaylor College of MedicineHoustonUSA

Personalised recommendations