Dynamics of 2D Incompressible Non-autonomous Navier–Stokes Equations on Lipschitz-like Domains

  • Xin-Guang Yang
  • Yuming QinEmail author
  • Yongjin Lu
  • To Fu Ma


This paper concerns the tempered pullback dynamics of 2D incompressible non-autonomous Navier–Stokes equations with a non-homogeneous boundary condition on Lipschitz-like domains. With the presence of a time-dependent external force f(t) which only needs to be pullback translation bounded, we establish the existence of a minimal pullback attractor with respect to a universe of tempered sets for the corresponding non-autonomous dynamical system. We then give estimates on the finite fractal dimension of the attractor based on trace formula. Under the additional assumption that the external force is perturbed from a stationary force by a time-dependent perturbation, we also prove the upper semi-continuity of the attractors as the non-autonomous perturbation vanishes. Lastly, we investigate the regularity of these attractors when smoother initial data are given. Our results are new even for smooth domains.


Navier–Stokes equation Lipshitz-like domain Universe Pullback tempered Pullback translation bounded Attractors 

Mathematics Subject Classification

35Q30 35B40 35B41 76D03 76D05 



This work was initiated when Xin-Guang Yang was a long term visitor as Posdocotor at ICMC-USP, Brazil, from May 2015 to June 2016, supported by FAPESP (Grant No. 2014/17080-0). He was also partially supported by NSFC of China (Grant No.11726626) and the Fund of Young Backbone Teacher in Henan Province (No. 2018GGJS039). Yongjin Lu was partially supported by NSF (Grant No. 1601127), they were also supported by the Key Project of Science and Technology of Henan Province (Grant No. 182102410069). Yuming Qin was in part supported by the NSFC of China (Grant No. 11671075). T. F. Ma was partially supported by CNPq (Grant No. 310041/2015-5).


  1. 1.
    Babin, A., Vishik, M.: The attractors of a Navier-Stokes system in unbounded channel-like domain. J. Dyn. Diff. Eqns. 4, 555–584 (1992)MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Babin, A., Vishik, M.: Attractors of Evolution Equations, Studies in Mathematics and its Applications, vol. 25. North-Holland Publishing Co., Amsterdam (1992)Google Scholar
  3. 3.
    Brown, R.M., Perry, P.A., Shen, Z.: On the dimension of the attractor of the non-homogeneous Navier-Stokes equations in non-smooth domains. Indiana Univ. Math. J. 49, 81–112 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  4. 4.
    Caraballo, T., Langa, J.A., Robinson, J.C.: Upper semicontinuity of attractors for small random perturbations of dynamical systems. Comm. Partial Diff. Eqns 23, 1557–1581 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Caraballo, T., Łukaszewicz, G., Real, J.: Pullback attractors for asymptotically compact non-autonomous dynamical systems. Nonlinear Anal. 64, 484–498 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Carvalho, A.N., Langa, J.A., Robinson, J.C.: Attractors for Infinite-Dimensional Non-autonomous Dynamical Systems. Applied Mathematical Sciences, vol. 182. Springer, New York (2013)zbMATHCrossRefGoogle Scholar
  7. 7.
    Chepyzhov, V.V., Ilyin, A.A.: On the fractal dimension of invariant sets: application to Navier-Stokes equations: partial differential equations and applications. Disc. Cont. Dyn. Syst. 10, 117–135 (2004)zbMATHGoogle Scholar
  8. 8.
    Chepyzhov, V.V., Titi, E.S., Vishik, M.I.: On the convergence of solutions of the solutions of the Leray-\(\alpha \) model to the trajectory attractor of the 3D Navier-Stokes system. Disc. Cont. Dyn. Syst. 17(3), 481–500 (2007)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Chepyzhov, V.V., Titi, E.S., Vishik, M.I.: On convergence of trajectory attractors of the 3D Navier-Stokes-\(\alpha \) model as \(\alpha \) approaches \(0\). Sbornik: Mathematics 198(12), 1703–1736 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  10. 10.
    Chepyzhov, V.V., Vishik, M.I.: Attractors for Equations of Mathematical Physics, p. 49. American Mathematical Society, Providence (2002)zbMATHGoogle Scholar
  11. 11.
    Chepyzhov, V.V., Vishik, M.I.: Averaging of 2D Navier-Stokes equations with singularly oscillating forces. Nonlinearity 22, 351–370 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Constantin, P., Foias, C.: Global Lyapunov exponents, Kaplan-Yorke formulas and the dimension of the attractor for 2D Navier-Stokes equation. Comm. Pure Appl. Math. 38, 1–27 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Constantin, P., Foias, C.: Navier-Stokes Equations. University of Chicago Press, Chicago (1988)zbMATHGoogle Scholar
  14. 14.
    Constantin, P., Foias, C., Manley, O., Temam, R.: Determining models and fractal dimension of turbulence flows. J. Fluid Mech. 150, 427–440 (1985)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Constantin, P., Foias, C., Temam, R.: On the dimension of the attractor in two-dimensional turbulence. Physica D 30, 284–296 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Crauel, H., Debussche, A., Flandoli, F.: Random attractors. J. Dyn. Diff. Equ. 9, 307–341 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  17. 17.
    Cui, H., Langa, J., Li, Y.: Regularity and structure of pullback attractors for reaction-diffusion type systems without uniqueness. Nonlinear Anal. 140, 208–235 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Dotering, C., Gibbon, J.: Note on the Constantin-Foias-Temam attractor dimension estimate for two-dimensional turbulence. Physica D 48, 471–480 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    Fabes, E.B., Kenig, C.E., Verchota, G.C.: The Dirichlet problem for the Stokes system on Lipschitz domains. Duke Math. J. 57, 769–793 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Foias, C., Manley, O., Temam, R., Treve, Y.: Asymptotic analysis of the Navier-Stokes equations. Physica D 9D, 157–188 (1983)MathSciNetzbMATHCrossRefGoogle Scholar
  21. 21.
    Foias, C., Manley, O., Rosa, R., Temam, R.: Navier-Stokes Equations and Turbulence. Cambridge University Press, Cambridge (2001)zbMATHCrossRefGoogle Scholar
  22. 22.
    García-Luengo, J., Marín-Rubio, P., Real, J.: Pullback attractors in \(V\) for non-autonomous 2D-Navier-Stokes equations and their tempered behavior. J. Diff. Eqns. 252, 4333–4356 (2012)zbMATHCrossRefGoogle Scholar
  23. 23.
    Hale, J.K., Raugel, G.: Upper semi-continuity of the attractor for a singularly perturbed hyperbolic equation. J. Diff. Eqns. 73, 197–214 (1988)zbMATHCrossRefGoogle Scholar
  24. 24.
    Hale, J.K., Lin, X., Raugel, G.: Upper semicontinuity of attractors for approximations of semigroups and partial differential equations. Math. Comput. 50(181), 89–123 (1988)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Hopf, E.: Üeber die Anfangswertaufgable für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1951)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Ilylin, A.A.: Attractors for Navier-Stokes equations in domains with finite measure. Nonlinear Anal. 27(5), 605–616 (1996)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Ladyzhenskaya, O.A.: On finite dimensionality of bounded invariant sets for the Navier-Stokes equations and some other dissipative system. Zap Nauchnich Seminarov LOMI 115, 137–155 (1982)zbMATHGoogle Scholar
  28. 28.
    Ladyzhenskaya, O.A.: The Mathematical Theory of Viscous Incompressible Flow, 2nd edn. Gordon and Breach, New York (1968). English editionGoogle Scholar
  29. 29.
    Ladyzhenskaya, O.: Attractors for Semigroups and Evolution Equations. Cambridge University Press, Cambridge (1991)zbMATHCrossRefGoogle Scholar
  30. 30.
    Langa, J.A., Łukaszewicz, G., Real, J.: Finite fractal dimension of pullback attractors for non-autonomous 2D Navier-Stokes equations in some unbounded domains. Nonlinear Anal. 66, 735–749 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    Leray, J.: Etude de diverses equations integrales nonlineaires et de quelques problemes que pose l’hydrodynamique. J. Math. Pures Appl. 12, 1–82 (1933)zbMATHGoogle Scholar
  32. 32.
    Leray, J.: Essai sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63, 193–248 (1934)MathSciNetzbMATHCrossRefGoogle Scholar
  33. 33.
    Lions, P.L.: Mathematical Topics in Fluid Mechanics. Incompressible Models, Oxford Lecture Series in Mathematics and its Applications, vol. 1, p. 3. Oxford University Press, New York (1996)Google Scholar
  34. 34.
    Liu, V.X.: A sharp lower bound for the Hausdorff dimension of the global attractors of the 2D Navier-Stokes equations. Comm. Math. Phys. 158, 327–339 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    Lu, S.: Attractors for non-autonomous 2D Navier-Stokes equations with less regular normal forces. J. Diff. Eqns. 230, 196–212 (2006)zbMATHCrossRefGoogle Scholar
  36. 36.
    Łukaszewicz, G., Kalita, P.: Navier-Stokes Equations. An Introduction with Applications. Advances in Mechanics and Mathematics, p. 34. Springer, Cham (2016)zbMATHCrossRefGoogle Scholar
  37. 37.
    Ma, T.F., Monteiro, R.N.: Singular limit and long-time dynamics of Bresse systems. SIAM J. Math. Anal. 49(4), 2468–2495 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Ma, Q., Wang, S., Zhong, C.: Necessary and sufficient conditions for the existence of global attractors for semigroups and applications. Indiana Univ. Math. J. 51, 1541–1559 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Marín-Rubio, P., Real, J.: On the relation between two different concepts of pullback attractors for non-autonomous dynamical systems. Nonlinear Anal. TMA 7, 3956–3963 (2009)MathSciNetzbMATHCrossRefGoogle Scholar
  40. 40.
    Miranville, A.: Shear layer flow in a channel: estimate on the dimension of the attractor. Physica D 65, 135–153 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  41. 41.
    Miranville, A., Wang, X.: Upper bounded on the dimension of the attractor for nonhomogeneous Navier-Stokes equations. Disc. Cont. Dyn. Syst. 2, 95–110 (1996)zbMATHGoogle Scholar
  42. 42.
    Miranville, A., Wang, X.: Attractors for nonautonomous nonhomogeneous Navier-Stokes equations. Nonlinearity 10, 1047–1061 (1997)MathSciNetzbMATHCrossRefGoogle Scholar
  43. 43.
    Qin, Y.: Nonlinear Parabolic-Hyperbolic Coupled Systems and Their Attractors, vol. 184. Birkhäser, Basel (2008)zbMATHGoogle Scholar
  44. 44.
    Qin, Y.: Integral and Discrete Inequalities and Their Applications. Nonlinear Inequalities, vol. 2. Birkhäser, Basel (2016)zbMATHCrossRefGoogle Scholar
  45. 45.
    Robinson, J. C.: Attractors and finite-dimensional behaviour in the 2D Navier-Stokes equations. ISRN Math. Anal. (2013). MathSciNetCrossRefGoogle Scholar
  46. 46.
    Robinson, J.C.: Dimensions, Embeddings, and Attractors, Cambridge Tracts in Mathematics, vol. 186. Cambridge University Press, Cambridge (2011)Google Scholar
  47. 47.
    Rosa, R.: The global attractor for the 2D Navier-Stokes flows on some unbounded domain. Nonlinear Anal. 32, 71–85 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Temam, R.: Navier-Stokes Equations, Theory and Numerical Analysis. North-Holland Publishing Company, Amsterdam (1979)zbMATHGoogle Scholar
  49. 49.
    Temam, R.: Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, vol. 68. Springer-Verlag, New York (1988)zbMATHCrossRefGoogle Scholar
  50. 50.
    Temam, R., Wang, X.: Asymptotic analysis of the linearized Navier-Stokes equations in a channel. Diff. Integral Eqns. 8, 1591–1618 (1995)MathSciNetzbMATHGoogle Scholar
  51. 51.
    Wang, Y., Qin, Y.: Upper semi-continuity of pullback attractors for non-classical diffusion equations. J. Math. Phys. 51, 0227-01-12 (2010)Google Scholar
  52. 52.
    Wang, Y., Zhong, C.K.: On the existence of pullback attractors for non-autonomous reaction-diffusion equations. Dyn. Syst. 23(1), 1–16 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Wang, Y., Zhong, C.K., Zhou, S.: Pullback attractors of non-autonomous dynamical systems. Disc. Cont. Dyn. Syst. 16(3), 587–614 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  54. 54.
    Wu, D., Zhong, C.: The attractors for the nonhomogeneous nonautonomous Navier-Stokes equations. J. Math. Anal. Appl. 321, 426–444 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  55. 55.
    Yang, X., Wang, S.: Global well-posedness of solutions for the 2D incompressible non-autonomous Navier-Stokes equation on Lipschitz-like domain. J. Part. Diff. Equ. 32(1), 77–92 (2019)Google Scholar
  56. 56.
    Yang, X.: Weak and strong pullback attractors for some nonlinear evolutionary equations with some non-autonomous non-compact external forces, prepared, (2019)Google Scholar
  57. 57.
    Zelati, M.Coti, Gal, C.G.: Singular limits of Voigt model in fluid dynamics. J. Math. Fluid. Mech. 17, 233–259 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  58. 58.
    Zelik, S.: Strong uniform attractors for non-autonomous dissipative PDEs with non-translation-compact external forces. Disc. Cont. Dyn. Syst. B 20(3), 781–810 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  59. 59.
    Zhao, C., Duan, J.: Convergence of global attractors of a 2D non-Newtonian system to the global attractor of the 2D Navier-Stokes system. Sci. China: Math. 56(2), 253–265 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Zhong, C.K., Yang, M., Sun, C.: The existence of global attractors for the norm-to-weak continuous semigroup and application to the nonlinear reaction-diffusion equations. J. Diff. Equ. 223(2), 367–399 (2006)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mathematics and Information ScienceHenan Normal UniversityXinxiangPeople’s Republic of China
  2. 2.Department of Applied MathematicsDonghua UniversityShanghaiPeople’s Republic of China
  3. 3.Department of Mathematics and EconomicsVirginia State UniversityPetersburgUSA
  4. 4.Institute of Mathematical and Computer SciencesUniversity of São PauloSão CarlosBrazil

Personalised recommendations