Advertisement

Applied Mathematics & Optimization

, Volume 79, Issue 1, pp 229–229 | Cite as

Correction to: Remarks on Hierarchic Control for a Linearized Micropolar Fluids System in Moving Domains

  • Isaías Pereira de JesusEmail author
Correction
  • 348 Downloads

1 Correction to: Appl Math Optim (2015) 72:493–521  https://doi.org/10.1007/s00245-015-9288-2

The original version of this article unfortunately contained a mistake in the equation.

On page 516, Equation there should be
$$\begin{aligned}&\inf _{({\varvec{\xi }}, \eta )}\Bigg \{\frac{1}{2}\int _{\mathcal {O} \times (0,T)}|\det K(t)|\big (|{\varvec{\varphi }}|^2 + |\psi |^2\big )dydt + \epsilon ||({\varvec{\xi }},\eta )||_{\mathbf {L}^2(\Omega ) \times L^2(\Omega )}\nonumber \\&\quad \quad \quad \quad \, - \big (({\varvec{\xi }},\eta ),({\varvec{z}}^T,w^T)\big )_{\mathbf {L}^2(\Omega ) \times L^2(\Omega )}\Bigg \} \end{aligned}$$
instead of
$$\begin{aligned}&7 \inf _{({\varvec{\xi }}, \eta )}\Bigg \{\frac{1}{2}\int _{\mathcal {O} \times (0,T)}|\det K(t)|\big (|{\varvec{\varphi }}|^2 + |\psi |^2\big )dydt + \epsilon ||({\varvec{\xi }},\eta )||_{\mathbf {L}^2(\Omega ) \times L^2(\Omega )}\nonumber \\&\quad \quad \quad \quad \quad - \big (({\varvec{\xi }},\eta ),({\varvec{z}}^T,w^T)\big )_{\mathbf {L}^2(\Omega ) \times L^2(\Omega )}\Bigg \} \end{aligned}$$

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Dpto. MatemáticaUniversidade Federal do PiauíTeresinaBrazil

Personalised recommendations