Advertisement

Applied Mathematics & Optimization

, Volume 79, Issue 1, pp 207–227 | Cite as

A Strong Convergence Theorem for the Split Common Null Point Problem in Banach Spaces

  • Truong Minh TuyenEmail author
Article
  • 137 Downloads

Abstract

In this paper, we study the split common null point problem. Then, using the hybrid projection method and the metric resolvent of monotone operators, we prove a strong convergence theorem for an iterative method for finding a solution of this problem in Banach spaces.

Keywords

Split common null point problem Maximal monotone operator Metric resolvent 

Mathematics Subject Classification

47H05 47H09 49J53 90C25 

Notes

Acknowledgements

The author thanks the referees and the editor for their valuable comments and suggestions which improved the presentation of this manuscript.

References

  1. 1.
    Agarwal, R.P., O’Regan, D., Sahu, D.R.: Fixed Point Theory for Lipschitzian-Type Mappings with Applications. Springer, New York (2009)zbMATHGoogle Scholar
  2. 2.
    Alber, Y.I.: Metric and generalized projections in Banach spaces: properties and applications. In: Kartsatos, A.G. (ed.) Theory and Applications of Nonlinear Operators of Accretive and Monotone Type. Marcel Dekker, New York (1996)Google Scholar
  3. 3.
    Alber, Y.I., Reich, S.: An iterative method for solving a class of nonlinear operator equations in Banach spaces. Panam. Math. J. 4, 39–54 (1994)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Barbu, V.: Nonlinear Semigroups and Differential Equations in Banach Spaces. Editura Acad. R. S. R, Bucuresti (1976)CrossRefzbMATHGoogle Scholar
  5. 5.
    Browder, F.E.: Nonlinear maximal monotone operators in Banach spaces. Math. Ann. 175, 89–113 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Byrne, C.: Iterative oblique projection onto convex sets and the split feasibility problem. Inverse Probl. 18(2), 441–453 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Byrne, C.: A unified treatment of some iterative algorithms in signal processing and image reconstruction. Inverse Probl. 18, 103–120 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Byrne, C., Censor, Y., Gibali, A., Reich, S.: The split common null point problem. J. Nonlinear Convex Anal. 13, 759–775 (2012)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Censor, Y., Elfving, T.: A multiprojection algorithm using Bregman projections in a product space. Numer. Algorithms 8(2–4), 221–239 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Censor, Y., Elfving, T., Kopf, N., Bortfeld, T.: The multiple-sets split feasibility problem and its application. Inverse Probl. 21, 2071–2084 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Censor, Y., Segal, A.: The split common fixed point problem for directed operators. J. Convex Anal. 16, 587–600 (2009)MathSciNetzbMATHGoogle Scholar
  12. 12.
    Censor, Y., Gibali, A., Reich, S.: Algorithms for the split variational inequality problems. Numer. Algorithms 59, 301–323 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Cioranescu, I.: Geometry of Banach Spaces. Duality Mappings and Nonlinear Problems. Kluwer, Dordrecht (1990)CrossRefzbMATHGoogle Scholar
  14. 14.
    Goebel, K., Kirk, W.A.: Topics in Metric Fixed Point Theory. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1990)CrossRefzbMATHGoogle Scholar
  15. 15.
    Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings. Marcel Dekker, New York (1984)zbMATHGoogle Scholar
  16. 16.
    Hojo, M., Takahashi, W.: A strong convegence theorem by shrinking projection method for the split common null point problem in Banach spaces. Numer. Funct. Anal. Optim. 37, 541–553 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Kamimura, S., Takahashi, W.: Strong convergence of a proximal-type algorithm in a Banach space. SIAM. J. Optim. 13, 938–945 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Masad, E., Reich, S.: A note on the multiple-set split convex feasibility problem in Hilbert space. J. Nonlinear Convex Anal. 8, 367–371 (2007)MathSciNetzbMATHGoogle Scholar
  19. 19.
    Moudafi, A.: The split common fixed point problem for demicontractive mappings. Inverse Probl. 26, 055007 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Reich, S.: On the asymptotic behavior of nonlinear semigroups and the range of accretive operators. J. Math. Anal. Appl. 79, 113–126 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Reich, S.: Book review: Geometry of banach spaces, duality mappings and nonlinear problems. Bull. Am. Math. Soc. 26, 367–370 (1992)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Rockafellar, R.T.: On the maximality of sums of nonlinear monotone operators. Trans. Am. Math. Soc. 149, 75–88 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Schopfer, F., Schuster, T., Louis, A.K.: An iterative regularization method for the solution of the split feasibility problem in Banach spaces. Inverse Probl. 24(5), 055008 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Takahashi, W.: Nonlinear Functional Analysis. Yokohama Publishers, Yokohama (2000)zbMATHGoogle Scholar
  25. 25.
    Takahashi, W.: Convex Analysis and Approximation of Fixed Points. Yokohama Publishers, Yokohama (2000)zbMATHGoogle Scholar
  26. 26.
    Takahashi, W.: The split feasibility problem in Banach spaces. J. Nonlinear Convex Anal. 15, 1349–1355 (2014)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Takahashi, W.: The split feasibility problem and the shrinking projection method in Banach spaces. J. Nonlinear Convex Anal. 16(7), 1449–1459 (2015)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Takahashi, S., Takahashi, W.: The split common null point problem and the shrinking projection method in Banach spaces. Optimization 65(2), 281–287 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Takahashi, W.: The split common null point problem in Banach spaces. Arch. Math. 104, 357–365 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Takahashi, W.: The split common null point problem for generalized resolvents in two Banach spaces. Numer. Algorithms (2016). doi: 10.1007/s11075-016-0230-8
  31. 31.
    Xu, H.K.: A variable Krasnosel’skii-Mann algorithm and the multiple-set split feasibility problem. Inverse Probl. 22, 2021–2034 (2006)CrossRefzbMATHGoogle Scholar
  32. 32.
    Xu, H.K.: Iterative methods for the split feasibility problem in infinite dimensional Hilbert spaces. Inverse Probl. 26, 105018 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Yang, Q.: The relaxed CQ algorithm for solving the problem split feasibility problem. Inverse Probl. 20, 1261–1266 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Wang, F., Xu, H.K.: Cyclic algorithms for split feasibility problems in Hilbert spaces. Nonlinear Anal. 74, 4105–4111 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Mathematics and InformaticsThainguyen University of SciencesThainguyenVietnam

Personalised recommendations