Applied Mathematics & Optimization

, Volume 72, Issue 3, pp 493–521 | Cite as

Remarks on Hierarchic Control for a Linearized Micropolar Fluids System in Moving Domains

  • Isaías Pereira de JesusEmail author


We study a Stackelberg strategy subject to the evolutionary linearized micropolar fluids equations in domains with moving boundaries, considering a Nash multi-objective equilibrium (non necessarily cooperative) for the “follower players” (as is called in the economy field) and an optimal problem for the leader player with approximate controllability objective. We will obtain the following main results: the existence and uniqueness of Nash equilibrium and its characterization, the approximate controllability of the linearized micropolar system with respect to the leader control and the existence and uniqueness of the Stackelberg–Nash problem, where the optimality system for the leader is given.


Micropolar fluids Stackelberg–Nash strategies Hierarchic control 

Mathematics Subject Classification

35K20 93B05 76D55 



The author wants to express his gratitude to the anonymous reviewers for their questions and commentaries; they were very helpful in improving this article. The author also thanks Newton Santos for his comments on the manuscript.


  1. 1.
    Abergel, A., Teman, R.: On some control problem in fluid mechanics. Theor. Comput. Fluid Dyn. 1, 303–325 (1990)Google Scholar
  2. 2.
    Araruna, F.D., Chaves-Silva, F.W., Rojas-Medar, M.A.: Exact controllability of Galerkin’s approximations of micropolar fluids. Proc. Am. Math. Soc. 138, 1361–1370 (2010)zbMATHMathSciNetCrossRefGoogle Scholar
  3. 3.
    Araruna, F.D., Menezes, S.D., Rojas-Medar, M.A.: On the approximate controllability of Stackelberg–Nash strategies for linearized micropolar fluids. Appl. Math. Optim. 70(3), 373–393 (2014)zbMATHMathSciNetCrossRefGoogle Scholar
  4. 4.
    Belmiloudi, A.: Stabilization, Optimal and Robust Control-Theory and Applications in Biological and Physical Sciences. Springer, London (2008)zbMATHGoogle Scholar
  5. 5.
    Betts, J.: Practical Methods for Optimal Control using Nonlinear Programming. SIAM, Philadelphia (2001)zbMATHGoogle Scholar
  6. 6.
    Blieger, L.: Real-Time PDE-Constraints Optimization. SIAM, Philadelphia (2007)Google Scholar
  7. 7.
    Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations. Springer, Berlin (2010)CrossRefGoogle Scholar
  8. 8.
    Calmelet-Eluhu, C., Rosenhaus, V.: Symmetries and solution of a micropolar fluid flow through a cylinder. Acta Mech. 147, 59–72 (2001)zbMATHCrossRefGoogle Scholar
  9. 9.
    Díaz, J.I.: On the von Neumann problem and the approximate controllability of Stackelberg–Nash strategies for some environmental problems. Rev. R. Acad. Cien. 96(3), 343–356 (2002)zbMATHGoogle Scholar
  10. 10.
    Díaz, J.I., Lions, J.-L.: On the approximate controllability of Stackelberg–Nash strategies. In: Díaz, J.I. (ed.) Ocean Circulation and Pollution Control—Mathematical and Numerical Investigations, vol. 17–27. Springer, Berlin (2005)Google Scholar
  11. 11.
    Ekeland, I., Teman, R.: Analyse Convexe et problèmes Variationneles. Dunod, Gauthier-Villars, Paris (1974)Google Scholar
  12. 12.
    Eringen, A.C.: Micropolar theory of liquid crystals. In: Liquid Crystal and Ordered Fluids, pp. 443–471. Plenum, New York (1978)Google Scholar
  13. 13.
    Eringen, A.C.: Theory of micropolar fluids. J. Math. Mech. 16, 1–18 (1996)MathSciNetGoogle Scholar
  14. 14.
    Fernández-Cara, E., Guerrero, S.: Local exact controllability of micropolar fluids. J. Math. Fluid. Mech. 9, 419–453 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  15. 15.
    Fernández-Cara, E., Guerrero, S., Imanuvilov, O.Y., Puel, J.-P.: Some controllability results for the N-dimensional Navier–Stokes and Boussinesq system with N\(-\)1 scalar controls. SIAM J. Control Opitim. 45(1), 146–173 (2006)zbMATHCrossRefGoogle Scholar
  16. 16.
    Fursikov, A.V.: Optimal control of systems. Theory and applications, Transl. Math. Monogr., vol. 187. American Mathematical Society, Providence (2000)Google Scholar
  17. 17.
    Gunsburger, M.D.: Perpespectives in Flown Control and Optimization. SIAM, Philadelphia (2003)Google Scholar
  18. 18.
    Jesus, I.P., Menezes, S.D.: On the approximate controllability of Stackelberg–Nash strategies for linearized micropolar fluids in moving domains. Comput. Appl. Math. (2014). doi: 10.1007/s40314-014-0126-y
  19. 19.
    Limaco, J., Clark, H.R., Medeiros, L.A.: Remarks on hierarchic control. J. Math. Anal. Appl. 359, 368–383 (2009)zbMATHMathSciNetCrossRefGoogle Scholar
  20. 20.
    Lions, J.-L.: Contrôle de Pareto de Systèmes Distribués. Le cas d’ évolution. C.R. Acad. Sci. Paris Ser I 302(11), 413–417 (1986)zbMATHMathSciNetGoogle Scholar
  21. 21.
    Lions, J.-L.: Contrôle de Pareto de Systèmes Distribués. Le cas stationaire. C.R. Acad. Sci. Paris Ser I 302(6), 223–227 (1986)zbMATHMathSciNetGoogle Scholar
  22. 22.
    Lions, J.-L.: Some remarks on Stackelberg’s optimization. Math. Models Methods Appl. Sci. 4, 477–487 (1994)zbMATHMathSciNetCrossRefGoogle Scholar
  23. 23.
    Lions, J.-L., Zuazua, E.: Exact boundary controllability of Galerkin’s approximations of Navier–Stokes equations. Ann. Scuola Norm. Sup. Pisa Cl. Sci. XXVI(4), 605–621 (1998)MathSciNetGoogle Scholar
  24. 24.
    Lukaszewicz, G.: Micropolar Fluids, Theory and Applications, Modeling and Simulation in Science, Engineering and Technology. Birkhauser Boston Inc., Boston (1999)Google Scholar
  25. 25.
    Nash, J.: Noncooperative games. Ann. Math. 54, 286–295 (1951)zbMATHMathSciNetCrossRefGoogle Scholar
  26. 26.
    Pareto, V.: Cours d’Économie Politique. Rouge, Laussane (1896)Google Scholar
  27. 27.
    Popel, A.S., Regirer, S.A., Usick, P.I.: A continuum model of blood flow. Biorheology 11, 427–437 (1974)Google Scholar
  28. 28.
    Ramos, A.M., Glowinski, R., Periaux, J.: Nash equilibria for the multiobjective control of linear differential equations. J. Optim. Theory Appl. 112(3), 457–498 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  29. 29.
    Ramos, A.M., Glowinski, R., Periaux, J.: Pointwise control of the Burgers equation and related Nash equilibrium problems: computational approach. J. Optim. Theory Appl. 112(3), 499–516 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  30. 30.
    Ramos, A.M., Roubicek, T.: Nash equilibria in noncooperative Predator–Prey Games. Appl. Math. Optim. 56(2), 211–241 (2007)zbMATHMathSciNetCrossRefGoogle Scholar
  31. 31.
    Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton (1969)Google Scholar
  32. 32.
    Simon, J.: Compact sets in the space \(L^{p}\left(0, T;B\right),\). Ann. Mat. Pura Appl. CXLVI(4), 65–96 (1987)Google Scholar
  33. 33.
    Stavre, R.: The control of the pressure for a micropolar fluid, dedicated to Eugen Soós. Z. Angew. Math. Phys. 53(6), 912–922 (2002)zbMATHMathSciNetCrossRefGoogle Scholar
  34. 34.
    Von Stackelberg, H.: Marktform und Gleichgewicht. Springer, Berlin (1934)Google Scholar
  35. 35.
    Yamaguchi, N.: Existence of global strong solution to the micropolar fluid system in a bounded domain. Math. Methods Appl. Sci. 28, 1507–1526 (2005)zbMATHMathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Dpto. MatemáticaUniversidade Federal do PiauíTeresinaBrazil

Personalised recommendations