Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Environmental Levels, Sources, and Cancer Risk Assessment of PAHs Associated with PM2.5 and TSP in Monterrey Metropolitan Area

Abstract

In this work, the content of polycyclic aromatic hydrocarbons (PAHs) in total suspended particles and particulate matter with an aerodynamic diameter ≤ 2.5 µm (PM2.5) was analyzed using gas chromatography–mass spectrometry. In addition, a sequential chemical analysis of C-rich particles was performed through the parallel coupling of micro-Raman spectroscopy and scanning electron microscopy with X-ray scattering detection. Samples were collected at four sites in the Monterrey metropolitan area, Mexico. A total of 13 PAHs were quantified; indeno(1,2,3-cd)pyrene, chrysene, and benzo(a)anthracene were the most abundant. The total PAH concentrations at the four sampling sites ranged from 1.34 to 8.76 μg/m3. The diagnostic relation of the PAHs indicates that these compounds were emitted by the burning of gasoline and diesel and by the burning of charcoal and biomass. The sequential analysis correlated the morphology and the elemental/molecular composition of the C-rich particles, associated with the PAHs, with their possible emission sources. The estimated lifetime excess cancer risk for inhalation was higher than that established by the World Health Organization, which clearly makes this a potential health risk for the population.

This is a preview of subscription content, log in to check access.

Fig. 1

Source: Google Earth

Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Abdel-Shafy HI, Mansour MSM (2016) A review on polycyclic aromatic hydrocarbons: source, environmental impact, effect on human health and remediation. Egypt J Pet 25(1):107–123. https://doi.org/10.1016/j.ejpe.2015.03.011

  2. Akyüz M, Çabuk H (2010) Gas–particle partitioning and seasonal variation of polycyclic aromatic hydrocarbons in the atmosphere of Zonguldak, Turkey. Sci Total Environ 408(22):5550–5558. https://doi.org/10.1016/j.scitotenv.2010.07.063

  3. Alves CA, Vicente AM, Custódio D, Cerqueira M, Nunes T, Pio C et al (2017) Polycyclic aromatic hydrocarbons and their derivatives (nitro-PAHs, oxygenated PAHs, and azaarenes) in PM2.5 from Southern European cities. Sci Total Environ 595:494–504. https://doi.org/10.1016/j.scitotenv.2017.03.256

  4. Amador-Muñoz O, Villalobos-Pietrini R, Miranda J, Vera-Avila LE (2011) Organic compounds of PM2.5 in Mexico valley: spatial and temporal patterns, behavior and sources. Sci Total Environ 409(8):1453–1465. https://doi.org/10.1016/j.scitotenv.2010.11.026

  5. Anastasopoulos AT, Wheeler AJ, Karman D, Kulka RH (2012) Intraurban concentrations, spatial variability and correlation of ambient polycyclic aromatic hydrocarbons (PAH) and PM2.5. Atmos Environ 59:272–283. https://doi.org/10.1016/j.atmosenv.2012.05.004

  6. Bandowe BAM, Meusel H, Huang R, Ho K, Cao J, Hoffmann T, Wilcke W (2014) PM2.5-bound oxygenated PAHs, nitro-PAHs and parent-PAHs from the atmosphere of a Chinese megacity: seasonal variation, sources and cancer risk assessment. Sci Total Environ 473–474:77–87. https://doi.org/10.1016/j.scitotenv.2013.11.108

  7. Borrás E, Tortajada-Genaro LA (2007) Characterisation of polycyclic aromatic hydrocarbons in atmospheric aerosols by gas chromatography–mass spectrometry. Anal Chim Acta 583(2):266–276. https://doi.org/10.1016/j.aca.2006.10.043

  8. Bourotte C, Forti MC, Taniguchi S, Bícego MC, Lotufo PA (2005) A wintertime study of PAHs in fine and coarse aerosols in São Paulo city, Brazil. Atmos Environ 39:3799–3811

  9. Bucur E, Danet AF (2016) Particulate matter and polycyclic aromatic hydrocarbon air pollution in areas of Bucharest with heavy road traffic. Rev Chim 67:621–625

  10. Cassee FR, Héroux ME, Gerlofs-Nijland ME, Kelly FJ (2013) Particulate matter beyond mass: recent health evidence on the role of fractions, chemical constituents and sources of emission. Inhal Toxicol 25(14):802–812. https://doi.org/10.3109/08958378.2013.850127

  11. Catelani T, Pratesi G, Zoppi M (2014) Raman characterization of ambient airborne soot and associated mineral phases. Aerosol Sci Technol 48(1):13–21. https://doi.org/10.1080/02786826.2013.847270

  12. Chen H, Ma S, Yu Y, Liu R, Li G, Huang H, An T (2019) Seasonal profiles of atmospheric PAHs in an e-waste dismantling area and their associated health risk considering bioaccessible PAHs in the human lung. Sci Total Environ 683:371–379

  13. Collins JF, Brown JP, Alexeeff GV, Salmon AG (1998) Potency equivalency factors for some polycyclic aromatic hydrocarbons and polycyclic aromatic hydrocarbon derivatives. Regul Toxicol Pharmacol 28(1):45–54. https://doi.org/10.1006/rtph.1998.1235

  14. Dallmann TR, Onasch TB, Kirchstetter TW, Worton DR, Fortner EC, Herndon SC et al (2014) Characterization of particulate matter emissions from on-road gasoline and diesel vehicles using a soot particle aerosol mass spectrometer. Atmos Chem Phys 14(14):7585–7599. https://doi.org/10.5194/acp-14-7585-2014

  15. Dimitriou K, Kassomenos P (2017) Aerosol contributions at an urban background site in Eastern Mediterranean: potential source regions of PAHs in PM10 mass. Sci Total Environ 598:563–571. https://doi.org/10.1016/j.scitotenv.2017.04.164

  16. Duan J, Bi X, Tan J, Sheng G, Fu J (2005) The differences of the size distribution of polycyclic aromatic hydrocarbons (PAHs) between urban and rural sites of Guangzhou, China. Atmos Res 78(3):190–203. https://doi.org/10.1016/j.atmosres.2005.04.001

  17. Dyremark A, Westerholm R, Övervik E, Gustavsson J-Å (1995) Polycyclic aromatic hydrocarbon (PAH) emissions from charcoal grilling. Atmos Environ 29(13):1553–1558. https://doi.org/10.1016/1352-2310(94)00357-Q

  18. Gao Y, Yang L, Chen J, Li Y, Jiang P, Zhang J et al (2018) Nitro and oxy-PAHs bounded in PM 2.5 and PM 1.0 under different weather conditions at Mount Tai in Eastern China: sources, long-distance transport, and cancer risk assessment. Sci Total Environ 622–623:1400–1407. https://doi.org/10.1016/j.scitotenv.2017.11.200

  19. Garza-Ocañas L, Garza-Ulloa H, Gonzalez-Santiago O, Lujan-Rangel R, Badillo-Castañeda CT (2010) PM2.5-bounded PAHS from two zones of the metropolitan area of Monterrey, Nuevo Leon, Mexico. Toxicol Lett 196:S287. https://doi.org/10.1016/j.toxlet.2010.03.906

  20. González LT, Longoria-Rodríguez FE, Sánchez-Domínguez M, Leyva-Porras C, Silva-Vidaurri LG, Acuna-Askar K et al (2016) Chemical and morphological characterization of TSP and PM2.5 by SEM–EDS, XPS and XRD collected in the metropolitan area of Monterrey, Mexico. Atmos Environ 143:249–260. https://doi.org/10.1016/j.atmosenv.2016.08.053

  21. González LT, Longoria Rodríguez FE, Sánchez-Domínguez M, Cavazos A, Leyva-Porras C, Silva-Vidaurri LG, Acuna-Askar K, Kharisov BI, Villarreal Chiu JF, Alfaro Barbosa JM (2017) Determination of trace metals in TSP and PM2.5 materials collected in the Metropolitan Area of Monterrey, Mexico: a characterization study by XPS, ICP–AES and SEM–EDS. Atmos Res 196:8–22

  22. González LT, Longoria-Rodríguez FE, Sánchez-Domínguez M, Leyva-Porras C, Acuña-Askar K, Kharissov BI et al (2018) Seasonal variation and chemical composition of particulate matter: a study by XPS, ICP-AES and sequential microanalysis using Raman with SEM/EDS. J Environ Sci (China). https://doi.org/10.1016/j.jes.2018.02.002

  23. Guo J, Wu F, Liao H, Zhao X, Li W, Wang J et al (2013) Sedimentary record of polycyclic aromatic hydrocarbons and DDTs in Dianchi Lake, an urban lake in Southwest China. Environ Sci Pollut Res 20(8):5471–5480. https://doi.org/10.1007/s11356-013-1562-8

  24. Han B, Ding X, Bai Z, Kong S, Guo G (2011) Source analysis of particulate matter associated polycyclic aromatic hydrocarbons (PAHs) in an industrial city in northeastern China. J Environ Monit 13(9):2597–2604

  25. Hazarika N, Srivastava A, Das A (2017) Quantification of particle bound metallic load and PAHs in urban environment of Delhi, India: source and toxicity assessment. Sustain Cities Soc 29:58–67

  26. Herrera-Gomez A, Hegedus A, Meissner PL (2002) Chemical depth profile of ultrathin nitrided SiO2 films. Appl Phys Lett 81(6):1014–1016

  27. IARC (2012) Agents classified by the IARC Monographs, Volumes 1–104. IARC Monogr 7(000050):1–25

  28. Ivleva NP, McKeon U, Niessner R, Pöschl U (2007) Raman microspectroscopic analysis of size-resolved atmospheric aerosol particle samples collected with an ELPI: soot, humic-like substances, and inorganic compounds. Aerosol Sci Technol 41(7):655–671. https://doi.org/10.1080/02786820701376391

  29. Jedynska A, Hoek G, Eeftens M, Cyrys J, Keuken M, Ampe C et al (2014) Spatial variations of PAH, hopanes/steranes and EC/OC concentrations within and between European study areas. Atmos Environ 87:239–248. https://doi.org/10.1016/j.atmosenv.2014.01.026

  30. Khalili NR, Scheff PA, Holsen TM (1995) PAH source fingerprints for coke ovens, diesel and gasoline engines, highway tunnels, and wood combustion emissions. Atmos Environ 29(4):533–542. https://doi.org/10.1016/1352-2310(94)00275-P

  31. Kozak K, Ruman M, Kosek K, Karasiński G, Stachnik Ł, Polkowska Z (2017) Impact of volcanic eruptions on the occurrence of PAHs compounds in the aquatic ecosystem of the southern part of West Spitsbergen (Hornsund Fjord, Svalbard). Water (Switzerland) 9(1):42. https://doi.org/10.3390/w9010042

  32. Kulkarni P, Venkataraman C (2000) Atmospheric polycyclic aromatic hydrocarbons in Mumbai, India. Atmos Environ 34(17):2785–2790. https://doi.org/10.1016/S1352-2310(99)00312-X

  33. Lee BK, Lee CH (2008) Analysis of acidic components, heavy metals and PAHS of particulate in the Changwon–Masan area of Korea. Environ Monitor Assess 136:21–33

  34. Lee HH, Choi NR, Lim HB, Yi SM, Kim YP, Lee JY (2018) Characteristics of oxygenated PAHs in PM10 at Seoul, Korea. Atmos Pollut Res 9(1):112–118. https://doi.org/10.1016/j.apr.2017.07.007

  35. Li P, Wang Y, Li Y, Wang Z, Zhang H, Xu P, Wang W (2010) Characterization of polycyclic aromatic hydrocarbons deposition in PM2.5 and cloud/fog water at Mount Taishan (China). Atmos Environ 44(16):1996–2003. https://doi.org/10.1016/j.atmosenv.2010.02.031

  36. Li X, Kong S, Yin Y, Li L, Yuan L, Li Q et al (2016) Polycyclic aromatic hydrocarbons (PAHs) in atmospheric PM2.5 around 2013 Asian Youth Games period in Nanjing. Atmos Res 174–175:85–96. https://doi.org/10.1016/j.atmosres.2016.01.010

  37. Mancilla Y, Mendoza A, Fraser MP, Herckes P (2016) Organic composition and source apportionment of fine aerosol at Monterrey, Mexico, based on organic markers. Atmos Chem Phys 16(2):953–970. https://doi.org/10.5194/acp-16-953-2016

  38. Mancilla Y, Paniagua IYH, Mendoza A (2019) Spatial differences in ambient coarse and fine particles in the Monterrey metropolitan area, Mexico: implications for source contribution. J Air Waste Manag Assoc 69(5):548–564. https://doi.org/10.1080/10962247.2018.1549121

  39. Mao Q, van Duin ACT, Luo KH (2017) Formation of incipient soot particles from polycyclic aromatic hydrocarbons: a ReaxFF molecular dynamics study. Carbon 121:380–388. https://doi.org/10.1016/j.carbon.2017.06.009

  40. Martins Pereira G, Teinilä K, Custódio D, Gomes Santos A, Xian H, Hillamo R et al (2017) Particulate pollutants in the Brazilian city of Saõ Paulo: 1-year investigation for the chemical composition and source apportionment. Atmos Chem Phys 17(19):11943–11969. https://doi.org/10.5194/acp-17-11943-2017

  41. Menichini E, Bocca B (2003) Polycyclic aromatic hydrocarbons. In: Caballero B (ed) Encyclopedia of food sciences and nutrition, 2nd edn. Academic Press, Oxford, pp 4616–4625. https://doi.org/10.1016/B0-12-227055-X/00939-1

  42. Mirante F, Alves C, Pio C, Pindado O, Perez R, Revuelta MA, Artiñano B (2013) Organic composition of size segregated atmospheric particulate matter, during summer and winter sampling campaigns at representative sites in Madrid, Spain. Atmos Res 132–133:345–361. https://doi.org/10.1016/j.atmosres.2013.07.005

  43. Murillo JH, Villalobos MC, Rojas Marín JF, Guerrero VHB, Solórzano Arias D (2017) Polycyclic aromatic hydrocarbons in PM2.5 and PM10 atmospheric particles in the Metropolitan Area of Costa Rica: source. Atmos Pollut Res 8(2):320–327. https://doi.org/10.1016/j.apr.2016.10.002

  44. Murillo-Tovar M, Barradas-Gimate A, Arias-Montoya M, Saldarriaga-Noreña H (2018) Polycyclic aromatic hydrocarbons (PAHs) associated with PM2.5 in Guadalajara, Mexico: environmental levels, health risks and possible sources. Environments 5(5):62. https://doi.org/10.3390/environments5050062

  45. Niu X, Ho SSH, Ho KF, Huang Y, Sun J, Wang Q et al (2017) Atmospheric levels and cytotoxicity of polycyclic aromatic hydrocarbons and oxygenated-PAHs in PM2.5 in the Beijing–Tianjin–Hebei region. Environ Pollut 231:1075–1084. https://doi.org/10.1016/j.envpol.2017.08.099

  46. OEHHA (Office of Environmental Hazards Assessments) (1994) Benzo[a]pyrene as a toxic air contaminant. California Environmental Protection Agency, Berkeley

  47. OEHHA (Office of Environmental Hazards Assessments) (2003) Air toxics hot spots program risk assessment guidelines. California Environmental Protection Agency, Oakland

  48. Olivella MÀ (2006) Polycyclic aromatic hydrocarbons in rainwater and surface waters of Lake Maggiore, a subalpine lake in Northern Italy. Chemosphere 63(1):116–131. https://doi.org/10.1016/j.chemosphere.2005.07.045

  49. Oliveira RL, Varandas L, Arbilla G (2014) Characterization of polycyclic aromatic hydrocarbon levels in the vicinity of a petrochemical complex located in a densely populated area of the Rio de Janeiro, Brazil. Atmos Poll Res 5:87–95

  50. Orecchio S (2010) Analytical method, pattern and sources of polycyclic aromatic hydrocarbons (PAHs) in the stone of the temples of Agrigento (Italy). J Hazard Mater 176(1):339–347. https://doi.org/10.1016/j.jhazmat.2009.11.033

  51. Park SS, Kim YJ, Kang CH (2002) Atmospheric polycyclic aromatic hydrocarbons in Seoul, Korea. Atmos Environ 36(17):2917–2924. https://doi.org/10.1016/S1352-2310(02)00206-6

  52. Reddy CM, Pearson A, Xu L, McNichol AP, Benner BA, Wise SA et al (2002) Radiocarbon as a tool to apportion the sources of polycyclic aromatic hydrocarbons and black carbon in environmental samples. Environ Sci Technol 36(8):1774–1782. https://doi.org/10.1021/es011343f

  53. Rogge WF, Hildemann LM, Mazurek MA, Cass GR, Simoneit BRT (1993) Sources of fine organic aerosol. 2. Noncatalyst and catalyst-equipped automobiles and heavy-duty diesel trucks. Environ Sci Technol 27(4):636–651. https://doi.org/10.1021/es00041a007

  54. Rubén N, Sánchez M, Gabriel S, Pérez C (2018) Sustainable tourism: saving water and energy in the hotel sector of Pachuca City Mexico. Int J Dev Sustain 7(4):1366–1375

  55. Sadezky A, Muckenhuber H, Grothe H, Niessner R, Pöschl U (2005) Raman microspectroscopy of soot and related carbonaceous materials: spectral analysis and structural information. Carbon 43(8):1731–1742. https://doi.org/10.1016/j.carbon.2005.02.018

  56. Saldarriaga-Noreña H, López-Márquez R, Murillo-Tovar M, Hernández-Mena L, Ospina-Noreña E, Sánchez-Salinas E et al (2015) Analysis of PAHs associated with particulate matter PM2.5 in two places at the City of Cuernavaca, Morelos, México. Atmosphere 6(9):1259–1270. https://doi.org/10.3390/atmos6091259

  57. Sarti E, Pasti L, Scaroni I, Casali P, Cavazzini A, Rossi M (2017) Determination of n-alkanes, PAHs and nitro-PAHs in PM2.5 and PM1 sampled in the surroundings of a municipal waste incinerator. Atmos Environ 149:12–23. https://doi.org/10.1016/j.atmosenv.2016.11.016

  58. Shan L, Kong M, Bennet TD, Sarroza AC, Eastwick C, Sun D et al (2018) Studies on combustion behaviours of single biomass particles using a visualization method. Biomass Bioenergy 109:54–60. https://doi.org/10.1016/j.biombioe.2017.12.008

  59. Simcik MF, Eisenreich SJ, Lioy PJ (1999) Source apportionment and source/sink relationships of PAHs in the coastal atmosphere of Chicago and Lake Michigan. Atmos Environ 33(30):5071–5079. https://doi.org/10.1016/S1352-2310(99)00233-2

  60. Slezakova K, Pires JCM, Castro D, Alvim-Ferraz MCM, Delerue-Matos C, Morais S, Pereira MC (2013) PAH air pollution at a Portuguese urban area: carcinogenic risks and sources identification. Environ Sci Pollut Res 20(6):3932–3945. https://doi.org/10.1007/s11356-012-1300-7

  61. SSA (Secretaría de Salud) (1993) NORMA Oficial Mexicana NOM-025-SSA1-1993, Salud ambiental. Criterios para evaluar el valor límite permisible para la concentración de material particulado. Valor límite permisible para la concentración de partículas suspendidas totales PST, partículas menores de 10 micrometros PM10 y partículas menores de 2.5 micrometros PM2.5 en el aire ambiente. Diario Oficial de la Federación. 26 de septiembre de 2005. México, D.F.

  62. SSA (Secretaría de Salud) (2014) NOM-025-SSA1–2014, Salud ambiental. Valores límites permisibles para la concentración de partículas suspendidas PM10 y PM2.5 en el aire ambiente y criterios para su evaluación. México, D.F.

  63. Stępkowska A, Kowalczyk D (2016) Polycyclic aromatic hydrocarbons (PAHs) in carbon black. Elastomery 20(1):7–11

  64. US Environmental Protection Agency (USEPA) (1999) Environmental protection agency methods. Compendium Method IO-2.1. Sampling of Ambient Air for Total Suspended Particulate Matter (TSP) and PM10 Using High Volume (HV) Sampler (Cincinnati)

  65. US Environmental Protection Agency (USEPA) (2001) Emergency Planing and Community Right-To-Know ACT-Section 313: Guidance for Reporting Toxic Chemical: Polycyclic aromatic Compounds Category. Washington, DC 20460

  66. Vasilakos C, Levi N, Maggos T, Hatzianestis J, Michopoulos J, Helmis C (2007) Gas–particle concentration and characterization of sources of PAHs in the atmosphere of a suburban area in Athens, Greece. J Hazard Mater 140(1):45–51. https://doi.org/10.1016/j.jhazmat.2006.06.047

  67. Viegas O, Novo P, Pinto E, Pinho O, Ferreira IMPLVO (2012) Effect of charcoal types and grilling conditions on formation of heterocyclic aromatic amines (HAs) and polycyclic aromatic hydrocarbons (PAHs) in grilled muscle foods. Food Chem Toxicol 50(6):2128–2134. https://doi.org/10.1016/j.fct.2012.03.051

  68. Wang W, Jing L, Zhan J, Wang B, Zhang DP, Zhang HW et al (2014) Nitrated polycyclic aromatic hydrocarbon pollution during the Shanghai World Expo 2010. Atmos Environ 89:242–248. https://doi.org/10.1016/j.atmosenv.2014.02.031

  69. Wang X, Thai PK, Li Y, Li Q, Wainwright D, Hawker DW, Mueller JF (2016) Changes in atmospheric concentrations of polycyclic aromatic hydrocarbons and polychlorinated biphenyls between the 1990s and 2010s in an Australian city and the role of bushfires as a source. Environ Pollut 213:223–231. https://doi.org/10.1016/j.envpol.2016.02.020

  70. WHO (World Health Organization) (2005) Air quality guidelines for Europe. WHO Regional Office for Europe, Copenhagen

  71. Wu SP, Tao S, Zhang Z-H, Lan T, Zuo Q (2007) Characterization of TSP-bound n-alkanes and polycyclic aromatic hydrocarbons at rural and urban sites of Tianjin, China. Environ Pollut 147(1):203–210. https://doi.org/10.1016/j.envpol.2006.08.020

  72. Wu S-P, Yang B-Y, Wang X-H, Yuan C-S, Hong H-S (2014) Polycyclic aromatic hydrocarbons in the atmosphere of two subtropical cities in Southeast China: seasonal variation and gas/particle partitioning. Aerosol Air Qual Res 14(4):1232–1246. https://doi.org/10.4209/aaqr.2013.01.0015

  73. Yin H, Xu L (2018) Comparative study of PM10/PM2.5-bound PAHs in downtown Beijing, China: concentrations, sources, and health risks. J Cleaner Prod 177:674–683. https://doi.org/10.1016/j.jclepro.2017.12.263

  74. Yunker MB, Macdonald RW, Vingarzan R, Mitchell RH, Goyette D, Sylvestre S (2002) PAHs in the Fraser River basin: a critical appraisal of PAH ratios as indicators of PAH source and composition. Org Geochem 33(4):489–515. https://doi.org/10.1016/S0146-6380(02)00002-5

  75. Zheng X, Wu Y, Zhang S, Hu J, Zhang KM, Li Z et al (2017) Characterizing particulate polycyclic aromatic hydrocarbon emissions from diesel vehicles using a portable emissions measurement system. Sci Rep 7(1):10058. https://doi.org/10.1038/s41598-017-09822-w

Download references

Acknowledgements

The authors thank Dr. Oscar Vega and MSci. Patricia Cerda from CIMAV for their valuable support and Ing. Armandina Valdez for the use of the monitoring stations of the Sistema Integral de Monitoreo Ambiental (SIMA). Thank you all.

Author information

Correspondence to Lucy T. González.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file 1 (DOCX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Longoria-Rodríguez, F.E., González, L.T., Mendoza, A. et al. Environmental Levels, Sources, and Cancer Risk Assessment of PAHs Associated with PM2.5 and TSP in Monterrey Metropolitan Area. Arch Environ Contam Toxicol (2020). https://doi.org/10.1007/s00244-019-00701-1

Download citation