Advertisement

Metal Contamination of Water and Sediments of the Vieira River, Montes Claros, Brazil

  • Matheus Mendes ReisEmail author
  • Leonardo David Tuffi Santos
  • Ariovaldo José da Silva
  • Gevany Paulino de Pinho
  • William Gomes Montes
Article

Abstract

Vieira River is the main recipient of domestic and industrial wastewater in the city of Montes Claros, MG, Brazil. Until 2010, domestic sewage was dumped in it without any kind of treatment. Concentrations of arsenic (As), chrome (Cr), copper (Cu), nickel (Ni), lead (Pb), and zinc (Zn) were determined in water and sediment samples in eight locations along the Vieira River during the dry season of 2015. Concentrations of Cu, Ni, and Zn detected in the water at some sites along the Vieira River were superior to the reference limits for toxicity. The concentration of Cu and Ni restricts the use of water for irrigation in some sites of the river. The level of sediment contamination was assessed by five approaches, including contamination factor (CF), pollution load index (PLI), geo-accumulation index (Igeo), cluster analysis (CA), and principal component analysis/factor analysis (PCA/FA). The results showed that Cr and the downstream sampling site nearest to the Wastewater Treatment Plant of the city of Montes Claros had the highest values of PLI, Igeo, and CF, which reinforces the influence of domestic and industrial wastewater discharge in pollution of the Vieira River. In addition, CA and PCA/FA reinforced the assumption that Cr comes from anthropogenic pollution sources.

Notes

Acknowledgements

The authors thank Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) for financial support; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) for providing scholarships; and Espaço da Escrita—Pró-Reitoria de Pesquisa—Universidade Estadual de Campinas (UNICAMP)—for the language services provided.

References

  1. Alves RIS, Sampaio CF, Nadal M, Schuhmacher M, Domingo JL, Segura-Muñoz SI (2014) Metal concentrations in surface water and sediments from Pardo River, Brazil: human health risks. Environ Res 133:149–155.  https://doi.org/10.1016/j.envres.2014.05.012 CrossRefGoogle Scholar
  2. ANA (Agência Nacional de Águas) (2013) Plano de Recursos Hídricos Da Bacia Hidrográfica Do Rio Verde Grande. ANA, Brasilia, Brazil. http://arquivos.ana.gov.br/servicos/planejamento/planoderecursos/20150902_PRH_Verde_Grande.pdf. Accessed 23 June 2018
  3. APHA (American Public Health Association) (2012) Standard method for examination of water and wastewater, 22nd edn. American Public Health Association, WashingtonGoogle Scholar
  4. Bhuyan MS, Bakar MA (2017) Seasonal variation of heavy metals in water and sediments in the Halda River, Chittagong, Bangladesh. Environ Sci Pollut Res 24:27587–27600.  https://doi.org/10.1007/s11356-017-0204-y CrossRefGoogle Scholar
  5. CBHSF (Comitê da Bacia Hidrográfica do Rio São Francisco) (2016) Plano de recursos hídricos da bacia hidrográfica do Rio São Francisco: 2016–2055. CBHSF, Salvador, Brazil. http://cbhsaofrancisco.org.br/wp-content/uploads/2016/01/RP4_V1_Relatorio_rev1.pdf. Accessed 23 June 2018
  6. CCME (Canadian Council of Ministers of the Environment) (2001) Canadian sediment quality guidelines for the protection of aquatic life. Canadian Environmental Quality Guidelines, Summary Tables. https://www.ccme.ca/en/resources/canadian_environmental_quality_guidelines/. Accessed 23 June 2018
  7. Cheng Z, Man YB, Nie XP, Wong MH (2013) Trophic relationships and health risk assessments of trace metals in the aquaculture pond ecosystem of Pearl River Delta, China. Chemosphere 90:2142–2148.  https://doi.org/10.1016/j.chemosphere.2012.11.017 CrossRefGoogle Scholar
  8. Christophoridis C, Kosma A, Evgenakis E, Bourliva A, Fytianos K (2019) Determination of heavy metals and health risk assessment of cheese products consumed in Greece. J Food Compost Anal 82:103238.  https://doi.org/10.1016/j.jfca.2019.103238 CrossRefGoogle Scholar
  9. CONAMA (Conselho Nacional do Meio Ambiente) (2004) Resolução nº 344. Estabelece as diretrizes gerais e os procedimentos mínimos para a avaliação do material a ser dragado em águas jurisdicionais brasileiras, e dá outras providências. Diário Oficial da União, Brasília. 25 de março de 2004. http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=445. Accessed 23 June 2018
  10. CONAMA (Conselho Nacional do Meio Ambiente) (2005) Resolução Nº 357. Dispõe sobre a classificação dos corpos de água e diretrizes ambientais para o seu enquadramento, bem como estabelece as condições e padrões de lançamento de efluentes, e dá outras providências. Diário Oficial da União, Brasília. 17 de março de 2005. http://www2.mma.gov.br/port/conama/legiabre.cfm?codlegi=459. Accessed 23 June 2018
  11. EU (European Union) (2002) Heavy metals in wastes, European Commission on Environment. European Union. https://ec.europa.eu/environment/waste/studies/pdf/heavy_metalsreport.pdf. Accessed 23 June 2018
  12. Hakanson L (1980) An ecological risk index for aquatic pollution control. A sedimentological approach. Water Res 14:975–1001.  https://doi.org/10.1016/0043-1354(80)90143-8 CrossRefGoogle Scholar
  13. Hallı M, Sarı E, Kurt MA (2014) Assessment of arsenic and heavy metal pollution in surface sediments of the Ergene River, Turkey. Pol J Environ Stud 23(5):1581–1590Google Scholar
  14. Horn AH, Lepsch IF, Sampaio RA, Rodrigues MN, Alvarenga AC, Oliveira ESA (2014) Heavy metals and aluminum content inside silicophytoliths from ricinus communis, Andropogon arundinaceus and Brachiaria decumbens grown on soils added with sewage sludge and heavy metal salts (Brazil). Rom J Mineral Depos 87:43–46Google Scholar
  15. Islam MS, Ahmed MK, Raknuzzaman M, Habibullah-Al-Mamun M, Islam MK (2015) Heavy metal pollution in surface water and sediment: a preliminary assessment of an urban river in a developing country. Ecol Indic 48:282–291.  https://doi.org/10.1016/j.ecolind.2014.08.016 CrossRefGoogle Scholar
  16. Kabata-Pendias A, Pendias H (2001) Trace elements in soils and plants. CREC Press, LondonGoogle Scholar
  17. Kalavrouziotis IK, Koukoulakis P, Kostakioti P (2012) Assessment of metal transfer factor under irrigation with treated municipal wastewater. Agric Water Manag 103:114–119.  https://doi.org/10.1016/j.agwat.2011.11.002 CrossRefGoogle Scholar
  18. Kuang C, Shan Y, Gu J, Shao H, Zhang W, Zhang Y, Zhang J, Liu H (2016) Assessment of heavy metal contamination in water body and riverbed sediments of the Yanghe River in the Bohai Sea, China. Environ Earth Sci 75:1–13.  https://doi.org/10.1007/s12665-016-5902-0 CrossRefGoogle Scholar
  19. Leite ME, Rocha AM (2016) Sistema de Informações Geográficas (SIG) Aplicado ao Cálculo de Índices Morfométricos em Bacia Hidrográfica. Geo UERJ 28:44–65.  https://doi.org/10.12957/geouerj.2016.18520
  20. Leite ME, Santos IS, Almeida JWL (2011) Mudança de Uso do Solo na Bacia do Rio Vieira, em Montes Claros/MG. Revista Brasileira de Geografia Física 4:779–792CrossRefGoogle Scholar
  21. Lu J, Li A, Huang P (2017) Distribution, sources and contamination assessment of heavy metals in surface sediments of the South Yellow Sea and Northern Part of the East China Sea. Mar Pollut Bull 124:470–479.  https://doi.org/10.1016/j.marpolbul.2017.07.007 CrossRefGoogle Scholar
  22. McCluggage D (1991) Heavy metal poisoning. NCS Magazine, The Bird Hospital, COGoogle Scholar
  23. Mondal P, Reichelt-Brushett AJ, Jonathan MP, Sujitha SB, Sarkar SK (2018) Pollution evaluation of total and acid-leachable trace elements in surface sediments of Hooghly River Estuary and Sundarban Mangrove Wetland (India). Environ Sci Pollut Res 25:5681–5699.  https://doi.org/10.1007/s11356-017-0915-0 CrossRefGoogle Scholar
  24. Santos S, Lapa N, Alves A, Morais J, Mendes B (2013) Analytical methods and validation for determining trace elements in red wines. J Environ Sci Health B Pestic Food Contam Agric Wastes 48:364–375.  https://doi.org/10.1080/03601234.2013.742374 CrossRefGoogle Scholar
  25. Srebotnjak T, Carr G, Sherbinin A, Rickwood C (2012) A global water quality index and hot-deck imputation of missing data. Ecol Indic 17:108–119.  https://doi.org/10.1016/j.ecolind.2011.04.023 CrossRefGoogle Scholar
  26. Suthar S, Nema AK, Chabukdhara M, Gupta SK (2009) Assessment of metals in water and sediments of Hindon River, India: impact of industrial and urban discharges. J Hazard Mater 171:1088–1095.  https://doi.org/10.1016/j.jhazmat.2009.06.109 CrossRefGoogle Scholar
  27. Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265.  https://doi.org/10.1029/95RG00262 CrossRefGoogle Scholar
  28. Thuong NT, Yoneda M, Ikegami M, Takakura M (2013) Source discrimination of heavy metals in sediment and water of to Lich River in Hanoi City using multivariate statistical approaches. Environ Monit Assess 185:8065–8075.  https://doi.org/10.1007/s10661-013-3155-x CrossRefGoogle Scholar
  29. Turekian KK, Wedepohl KH (1961) Distribution of the elements in some major units of the Earth’s crust. Geol Soc Am Bull 72:175–192.  https://doi.org/10.1130/0016-7606(1961)72%5b175:DOTEIS%5d2.0.CO;2 CrossRefGoogle Scholar
  30. USEPA (US Environmental Protection Agency) (1998) Method 3051A. Microwave assisted acid digestion of sediments, sludge, soils and oils. US Environmental Protection Agency, Washington, DCGoogle Scholar
  31. USEPA (US Environmental Protection Agency) (1999) Screening level ecological risk assessment protocol for hazardous waste combustion facilities. Appendix E: Toxicity reference values. US Environmental Protection Agency, Washington, DCGoogle Scholar
  32. USEPA (US Environmental Protection Agency) (2012) Guidelines for water reuse. US Environmental Protection Agency, Washington, DC. https://www3.epa.gov/region1/npdes/merrimackstation/pdfs/ar/AR-1530.pdf. Accessed 23 June 2018
  33. Varol M (2011) Assessment of heavy metal contamination in sediments of the Tigris River (Turkey) using pollution indices and multivariate statistical techniques. J Hazard Mater 195:355–364.  https://doi.org/10.1016/j.jhazmat.2011.08.051 CrossRefGoogle Scholar
  34. Vu CT, Lin C, Shern CC, Yeh G, Le VG, Tran HT (2017) Contamination, ecological risk and source apportionment of heavy metals in sediments and water of a contaminated river in Taiwan. Ecol Indic 82:32–42.  https://doi.org/10.1016/j.ecolind.2017.06.008 CrossRefGoogle Scholar
  35. Ward JH (1963) Hierarchical grouping to optimize an objective function. J Am Stat Assoc 58:236–244CrossRefGoogle Scholar
  36. Webb EA, Longstaffe FJ (2000) The oxygen isotopic compositions of silica phytoliths and plant water in grasses: implications for the study of paleoclimate. Geochim Cosmochim Acta 64:767–780.  https://doi.org/10.1016/S0016-7037(99)00374-9 CrossRefGoogle Scholar
  37. WHO (World Health Organisation) (2006) Guidelines for the safe use of wastewater, excreta and greywater. World Health Organisation, GenevaGoogle Scholar
  38. WHO (World Health Organization) (2011) Guidelines for drinking-water quality. World Health Organization, GenevaGoogle Scholar
  39. Xu F, Hu B, Yuan S, Zhao Y, Dou Y, Jiang Z, Yin X (2018) Heavy metals in surface sediments of the continental shelf of the South Yellow Sea and East China Sea: sources, distribution and contamination. CATENA 160:194–200.  https://doi.org/10.1016/j.catena.2017.09.022 CrossRefGoogle Scholar
  40. Yang H, Xie P, Ni L, Flower RJ (2012) Pollution in the Yangtze. Science 337:410.  https://doi.org/10.1126/science.337.6093.410-a CrossRefGoogle Scholar
  41. Yang J, Chen L, Liu LZ, Shi WL, Meng XZ (2014) Comprehensive risk assessment of heavy metals in lake sediment from public parks in Shanghai. Ecotoxicol Environ Saf 102:129–135.  https://doi.org/10.1016/j.ecoenv.2014.01.010 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Agricultural EngineeringUniversity of CampinasCampinasBrazil
  2. 2.Institute of Agrarian SciencesFederal University of Minas GeraisMontes ClarosBrazil

Personalised recommendations