Advertisement

Assessing Genotoxicity and Mutagenicity of Three Common Amphibian Species Inhabiting Agroecosystem Environment

  • Macks Wendhell Gonçalves
  • Calebe Bertolino Marins de Campos
  • Fernanda Ribeiro Godoy
  • Priscilla Guedes Gambale
  • Hugo Freire Nunes
  • Fausto Nomura
  • Rogério Pereira Bastos
  • Aparecido Divino da Cruz
  • Daniela de Melo e SilvaEmail author
Article

Abstract

Amphibians are constantly exposed to pollutants and the stress of agricultural activities. We selected three anuran amphibian species Dendropsophus minutus, Boana albopunctata, and Physalaemus cuvieri, totaling 309 individuals. We collected tadpoles in 15 permanent ponds: 5 soybean crops, 3 corn crops, and 7 nonagricultural lands. Our study provides the first comparative data on the genotoxicity and mutagenicity of three common amphibian anurans. Dendropsophus minutus was the most vulnerable species compared with B. albopunctata and P. cuvieri for comet assay and micronuclei test. However, the more significant amount of DNA damage seen in D. minutus does not mean that their populations are threatened once such species adapt well to anthropogenic disturbances. Despite, P. cuvieri was less sensitive than the other two species; the DNA damage was significantly higher in soybean crops. Physalaemus cuvieri is a leptodactylidae species that deposit their eggs in foam nests, which are essential to protect eggs from dehydration. Moreover, the foam reduces the contact of eggs with water; thus, P. cuvieri eggs could be less exposed to contaminants present in pounds, compared with D. minutus and B. albopunctata, which deposit their eggs directly in the water. Therefore, this study was sufficiently sensitive to detect genotoxic and mutagenic effects in tadpoles exposed to agroecosystems. We strongly suggest D. minutus in future biomonitoring studies that involve the comparison of anthropized versus not anthropized environments. Overall, we recommend the comet assay and micronucleus test as effective methods for the detection of genotoxic damage in amphibian anurans to the environmental disturbance, especially in agricultural sites.

Graphic Abstract

Notes

Acknowledgements

The authors thank Projeto Girinos do Brasil (Edital SISBIOTA: Processos CNPq 563075/2010-4 and FAPESP 2010/52321-7) and FAPEG (Processos: 201210267001094 – Universal/2012 and 201210767000812 - Pronex). ADC, DMS, FN, and RPB thank the CNPq fellowship, and MWG, FRG, HFN, and PG thank the individuals and organizations that have granted their scholarships.

References

  1. Agostini MG, Natale GS, Ronco AE (2010) Lethal and sublethal effects of cypermethrin to Hypsiboas pulchellus tadpoles. Ecotoxicology 19:1545–1550.  https://doi.org/10.1007/s10646-010-0539-3 CrossRefGoogle Scholar
  2. Allran JW, Karasov WH (2000) Effects of atrazine and nitrate on northern leopard frog (Rana pipiens) larvae exposed in the laboratory from posthatch through metamorphosis. Environ Toxicol Chem 19:2850–2855.  https://doi.org/10.1002/etc.5620191133 CrossRefGoogle Scholar
  3. Antunes SC, Castro BB, Nunes B, Pereira R, Gonçalves F (2008) In situ bioassay with Eisenia andrei to assess soil toxicity in an abandoned uranium mine. Ecotoxicol Environ Saf 71:620–631.  https://doi.org/10.1016/j.ecoenv.2008.02.007 CrossRefGoogle Scholar
  4. Aquino L, Bastos R, Kwet A, Reichle S, Silvano D, Azevedo-Ramos C, Scott N, Baldo D (2010) Hypsiboas albopunctatus (errata version published in 2016). Red List Threat Species 2010:e.T55378A86178507Google Scholar
  5. Arcaute CR, Pérez-Inglesis JM, Nikoloff N, Natale GS, Soloneski S, Larramendy ML (2014) Genotoxicity evaluation of the insecticide imidacloprid on circulating blood cells of Montevideo tree frog Hypsiboa spulchellus tadpoles (Anura, Hylidae) by comet and micronucleus bioassays. Ecol Indic 45:632–639CrossRefGoogle Scholar
  6. Babini MS, de Lourdes Bionda C, Salas NE, Martino AL (2015) Health status of tadpoles and metamorphs of Rhinella arenarum (Anura, Bufonidae) that inhabit agroecosystems and its implications for land use. Ecotoxicol Environ Saf 118:118–125.  https://doi.org/10.1016/j.ecoenv.2015.04.017 CrossRefGoogle Scholar
  7. Babini MS, de Lourdes Bionda C, Salas NE, Martino AL (2016) Adverse effect of agroecosystem pond water on biological endpoints of common toad (Rhinella arenarum) tadpoles. Environ Monit Assess 188 (8):459CrossRefGoogle Scholar
  8. Bastos RP, Lima LP, Pasquali MS (2003) Sapos, rãs e pererecas: desvendando o segredo dos anfíbios, 1ª edn. R.P. Bastos, GoiâniaGoogle Scholar
  9. Beja P, Alcazar R (2003) Conservation of Mediterranean temporary ponds under agricultural intensification: an evaluation using amphibians. Biol Conserv 114:317–326.  https://doi.org/10.1016/S0006-3207(03)00051-X CrossRefGoogle Scholar
  10. Boone MD, Bridges CM, Rothermel BB (2001) Growth and development of larval green frogs (Rana clamitans) exposed to multiple doses of an insecticide. Oecologia 129:518–524.  https://doi.org/10.1007/s004420100749 CrossRefGoogle Scholar
  11. Boone MD, Davidson C, Britton CM (2009) Evaluating the impact of pesticides on amphibian declines. In: Heatwole H, Williamson J (eds) Amphibian decline: diseases, parasites, maladies, and pollution, vol 8. Amphibian biology series. Surrey Beatty and Sons, Chipping Norton (UK), pp 3186–3207Google Scholar
  12. Borges RE, de Souza Santos LR, Benvindo-Souza M, Modesto RS, Assis RA, de Oliveira C (2019) Genotoxic evaluation in tadpoles associated with agriculture in the Central Cerrado, Brazil. Arch Environ Contam Toxicol 77(1):22–28.  https://doi.org/10.1007/s00244-019-00623-y CrossRefGoogle Scholar
  13. Brodeur JC, Sassone A, Hermida GN, Codugnello N (2013) Environmentally-relevant concentrations of atrazine induce non-monotonic acceleration of developmental rate and increased size at metamorphosis in Rhinella arenarum tadpoles. Ecotoxicol Environ Saf 92:10–17.  https://doi.org/10.1016/j.ecoenv.2013.01.019 CrossRefGoogle Scholar
  14. Brühl CA, Pieper S, Weber B (2011) Amphibians at risk? Susceptibility of terrestrial amphibian life stages to pesticides. Environ Toxicol Chem 30(11):2465–2472.  https://doi.org/10.1002/etc.650 CrossRefGoogle Scholar
  15. Buck JC, Hua J, Brogan WR, Dang TD, Urbina J, Bendis RJ, Stoler AB, Blaustein AR, Relyea RA (2015) Effects of pesticide mixtures on host-pathogen dynamics of the amphibian chytrid fungus. PLoS ONE 10:1–17.  https://doi.org/10.1371/journal.pone.0132832 Google Scholar
  16. Cabagna MC, Lajmanovich RC, Peltzer PM, Attademo AM, Ale E (2006) Induction of micronuclei in tadpoles of (Amphibia: Leptodactylidae) by the pyrethroid insecticide cypermethrin. Toxicol Environ Chem 88(4):729–737CrossRefGoogle Scholar
  17. Carvalho WF, Franco FC, Godoy FR, Folador D, Avelar JB, Nomura F, da Cruz AD, de Sabóia-Morais SMT, Bastos RP, de Silva Melo D (2018) Evaluation of genotoxic and mutagenic effects of glyphosate roundup original® in Dendropsophus minutus Peters, 1872 Tadpoles. South Am J Herpetol 13:220–229.  https://doi.org/10.2994/SAJH-D-17-00016.1 CrossRefGoogle Scholar
  18. Castro BB, Guilhermino L, Ribeiro R (2003) In situ bioassay chambers and procedures for assessment of sediment toxicity with Chironomus riparius. Environ Pollut 125:325–335.  https://doi.org/10.1016/S0269-7491(03)00120-9 CrossRefGoogle Scholar
  19. Castro BB, Sobral O, Guilhermino L, Ribeiro R (2004) An in situ bioassay integrating individual and biochemical responses using small fish species. Ecotoxicology 13:667–681.  https://doi.org/10.1007/s10646-003-4427-y CrossRefGoogle Scholar
  20. Clements C, Ralph S, Petras M (1997) Genotoxicity of select herbicides in Rana catesbeiana tadpoles using the alkaline single-cell gel DNA electrophoresis (comet) assay. Environ Mol Mutagen 29:277–288.  https://doi.org/10.1002/(SICI)1098-2280 CrossRefGoogle Scholar
  21. Collins AR (2004) The comet assay for DNA damage and repair: principles, applications, and limitations. Mol Biotechnol 26(3):249–261CrossRefGoogle Scholar
  22. Cramp RL, Franklin CE (2018) Exploring the link between ultraviolet B radiation and immune function in amphibians: implications for emerging infectious diseases. Conserv. Physiol. 6:1–16.  https://doi.org/10.1093/conphys/coy035 CrossRefGoogle Scholar
  23. Crane M, Burton GA, Culp JM, Greenberg MS, Munkittrick KR, Ribeiro R, Salazar MH, St-Jean SD (2007) Review of aquatic in situ approaches for stressor and effect diagnosis. Integr Environ Assess Manag 3:234.  https://doi.org/10.1897/IEAM_2006-027.1 CrossRefGoogle Scholar
  24. Cruz-Esquivel Á, Viloria-Rivas J, Marrugo-Negrete J (2017) Genetic damage in Rhinella marina populations in habitats affected by agriculture in the middle region of the Sinú River,Colombia. Environ Sci Pollut Re. 24:27392–27401.  https://doi.org/10.1007/s11356-017-0134-8 CrossRefGoogle Scholar
  25. Davidson C, Shaffer HB, Jennings MR (2001) Declines of the California red-legged frog: climate, UV-B, habitat, and pesticides hypotheses. Ecol Appl 11(2):464–479CrossRefGoogle Scholar
  26. Dias LCP, Pimenta FM, Santos AB, Costa MH, Ladle RJ (2016) Patterns of land use, extensification, and intensification of Brazilian agriculture. Global Change Biol 22(8):2887–2903CrossRefGoogle Scholar
  27. Duellman WE, Trueb L (1994) Biology of amphibians. The John Hopkings University Press, Baltimore, pp 1–610Google Scholar
  28. Feng S, Kong Z, Wang X, Zhao L, Peng P (2004) Acute toxicity and genotoxicity of two novel pesticides on amphibian, Rana N. Hallowell. Chemosphere 56:457–463.  https://doi.org/10.1016/j.chemosphere.2004.02.010 CrossRefGoogle Scholar
  29. Fenech M (2000) The in vitro micronucleus technique. Muta Res-Fund Mol M 455(1–2):81–95CrossRefGoogle Scholar
  30. Ferreira CM, Lombardi JV, Machado-Neto JG, Bueno-Guimarães HM, Soares SR, Saldiva PH (2004) Effects of copper oxychloride in Rana catesbeiana tadpoles: toxicological and bioaccumulative aspects. B Environ Contam Tox 73(3):465–470CrossRefGoogle Scholar
  31. Fisher RN, Shaffer HB (1996) The decline of amphibians in California’s Great central valley. Conserv Biol 10:1387–1397.  https://doi.org/10.1046/j.1523-1739.1996.10051387.x CrossRefGoogle Scholar
  32. Frost DR (2018) Amphibian species of the World: Online Reference. Version 6.0 http://research.amnh.org/herpetology/amphibia/index.html. Accessed 01 Aug 2018
  33. Gehara M, Crawford AJ, Orrico VGD, Rodríguez A, Lötters S, Fouquet A, Barrientos LS, Brusquetti F, De la Riva I, Ernst R, Urrutia GG, Glaw F, Guayasamin JM, Hölting M, Jansen M, Kok PJR, Kwet A, Lingnau R, Lyra M, Moravec J, Pombal JP, Rojas-Runjaic FJM, Schulze A, Señaris JC, Solé M, Rodrigues MT, Twomey E, Haddad CFB, Vences M, Köhler J (2014) High levels of diversity uncovered in a widespread nominal taxon: continental phylogeography of the neotropical tree frog Dendropsophus minutus. PLoS ONE 9:e103958.  https://doi.org/10.1371/journal.pone.0103958 CrossRefGoogle Scholar
  34. Gosner KL (1960) A simplified table for staging anuran embryos and larvae with notes on identification. Herpetologica 16:183–190Google Scholar
  35. Gonçalves MW, Marins de Campos CB, Batista VG, da Cruz AD, de Marco Junior P, Bastos RP, de Silva Melo D (2017a) Genotoxic and mutagenic effects of Atrazine Atanor 50 SC on Dendropsophus minutus Peters, 1872 (Anura: Hylidae) developmental larval stages. Chemosphere 182:730–737.  https://doi.org/10.1016/j.chemosphere.2017.05.078 CrossRefGoogle Scholar
  36. Gonçalves MW, Gambale PG, Godoy FR, Alves AA, Rezende PH, Cruz ADD, Maciel NM, Nomura F, Bastos RP, Marco-Jr PD, Silva DDM (2017b) The agricultural impact of pesticides on Physalaemus cuvieri tadpoles (Amphibia: anura) ascertained by comet assay. Zoologia 34:1–8.  https://doi.org/10.3897/zoologia.34.e19865 CrossRefGoogle Scholar
  37. Hayes TB, Falso P, Gallipeau S, Stice M (2010) The cause of global amphibian declines: a developmental endocrinologist’s perspective. J Exp Biol 213:921–933.  https://doi.org/10.1242/jeb.040865 CrossRefGoogle Scholar
  38. Hoffman DJ, Rattner BA, Burton GA Jr, Cairns J Jr (eds) (2010) Handbook of ecotoxicology. CRC Press, Boca RatonGoogle Scholar
  39. Jing Xu, Yao Guojun, Liu Donghui, Liu Chang, Wang Fang, Wang Peng, Zhiqiang Z (2017) Exposure of frogs and tadpoles to chiral herbicide fenoxaprop-ethyl. Chemosphere 186(november):832–838.  https://doi.org/10.1016/j.chemosphere.2017.07.132 CrossRefGoogle Scholar
  40. Lajmanovich RC, Attademo AM, Simoniello MF, Poletta GL, Junges CM, Peltzer PM, Grenón P, Cabagna-Zenklusen MC (2015) Harmful effects of the dermal intake of commercial formulations containing chlorpyrifos, 2,4-D, and glyphosate on the common toad Rhinella arenarum (Anura: Bufonidae). Water Air Soil Pollut 226:427.  https://doi.org/10.1007/s11270-015-2695-9 CrossRefGoogle Scholar
  41. Liu WY, Wang CY, Wang T-S, Fellers GM, Lai B-C, Kam Y-C (2011) Impacts of the herbicide butachlor on the larvae of a paddy field breeding frog (Fejervarya limnocharis) in subtropical Taiwan. Ecotoxicology 20:377–384.  https://doi.org/10.1007/s10646-010-0589-6 CrossRefGoogle Scholar
  42. Mann RM, Hyne RV, Choung CB, Wilson SP (2009) Amphibians and agricultural chemicals: review of the risks in a complex environment. Environ Pollut 157:2903–2927.  https://doi.org/10.1016/j.envpol.2009.05.015 CrossRefGoogle Scholar
  43. Mann RM, Bidwell JR (2001) The acute toxicity of agricultural surfactants to the tadpoles of four Australian and two exotic frogs. Environ Pollut 114(2):195–205CrossRefGoogle Scholar
  44. Marques SM, Chaves S, Gonçalves F, Pereira R (2013) Evaluation of growth, biochemical and bioaccumulation parameters in Pelophylax perezi tadpoles, following an in situ acute exposure to three different effluent ponds from a uranium mine. Sci Total Environ 445–446:321–328.  https://doi.org/10.1016/j.scitotenv.2012.12.080 CrossRefGoogle Scholar
  45. Marsh DM, Trenham PC (2001) Metapopulation dynamics and amphibian conservation. Conserv Biol 15:40–49.  https://doi.org/10.1111/j.1523-1739.2001.00129.x CrossRefGoogle Scholar
  46. Matson CW, Gillespie AM, McCarthy C, McDonald TJ, Bickham JW, Sullivan R, Donnelly KC (2009) Wildlife toxicology: biomarkers of genotoxic exposures at a hazardous waste site. Ecotoxicology 18(7):886–898CrossRefGoogle Scholar
  47. Meza-Joya FL, Ramírez-Pinilla MP, Fuentes-Lorenzo JL (2013) Toxic, cytotoxic, and genotoxic effects of a glyphosate formulation (RoundupSL-Cosmoflux411F) in the direct-developing frog Eleutherodactylus johnstonei. Environ Mol Mu-tagenesis 54:362–373.  https://doi.org/10.1002/em.21775 CrossRefGoogle Scholar
  48. Mijares A, Rodrigues MT, Baldo D (2010) Physalaemus cuvieri. IUCN Red List Threat Species. 2010:e.T57250A11609155Google Scholar
  49. Moreira S, Lima I, Ribeiro R, Guilhermino L (2006) Effects of estuarine sediment contamination on feeding and on key physiological functions of the polychaete Hediste diversicolor: laboratory and in situ assays. Aquat Toxicol 78:186–201.  https://doi.org/10.1016/j.aquatox.2006.03.001 CrossRefGoogle Scholar
  50. Mouchet F, Gauthier L, Mailhes C, Jourdain MJ, Ferrier V, Triffault G, Devaux A (2006) Biomonitoring of the genotoxic potential of aqueous extracts of soils and bottom ash resulting from municipal solid waste incineration, using the comet and micronucleus tests on amphibian (Xenopus laevis) larvae and bacterial assays (Mutatox and Ames test). Sci Total Environ 355:232–246.  https://doi.org/10.1016/j.scitotenv.2005.02.031 CrossRefGoogle Scholar
  51. Nikoloff N, Natale GS, Marino D, Soloneski S, Larramendy ML (2014) Flurochloridone-based herbicides induced genotoxicity effects on Rhinella arenarum tadpoles (Anura: Bufonidae). Ecotoxicol Environ Saf 100:275–281.  https://doi.org/10.1016/j.ecoenv.2013.10.021 CrossRefGoogle Scholar
  52. Pinheiro PDP, Cintra CED, Valdujo PH, Silva HLR, Martins IA, da Silva NJ, Garcia PCA (2018) A new species of the Boana albopunctata Group (Anura: Hylidae) from the Cerrado of Brazil. South Am J Herpetol 13:170–182.  https://doi.org/10.2994/SAJH-D-17-00040.1 CrossRefGoogle Scholar
  53. Pollo FE, Bionda CL, Salinas ZA, Salas NE, Martino AL (2015) Common toad Rhinella arenarum (Hensel, 1867) and its importance in assessing environmental health: test of micronuclei and nuclear abnormalities in erythrocytes. Environ Monit Assess 187:581.  https://doi.org/10.1007/s10661-015-4802-1 CrossRefGoogle Scholar
  54. Pollo FE, Grenat PR, Otero MA, Salas NE, Martino AL (2016) Assessment in situ of genotoxicity in tadpoles and adults of frog Hypsiboas cordobae (Barrio 1965) inhabiting aquatic ecosystems associated with fluorite mine. Ecotoxicol Environ Saf 133:466–474.  https://doi.org/10.1016/j.ecoenv.2016.08.003 CrossRefGoogle Scholar
  55. Pollo FE, Grenat PR, Otero MA, Babini S, Salas NE, Martino AL (2019) Evaluation in situ of genotoxic and cytotoxic response in the diploid/polyploid complex Odontophrynus (Anura: Odontophrynidae) inhabiting agroecosystems. Chemosphere 216:306–312.  https://doi.org/10.1016/j.chemosphere.2018.10.149 CrossRefGoogle Scholar
  56. Raghunath S, Veerabhadrappa C, Krishnamurthy S (2017) Nuclear abnormalities in erythrocytes of frogs from wetlands and croplands of Western Ghats indicate environmental contaminations. J Trop Life Sci 7:208–212.  https://doi.org/10.11594/jtls.07.03.04 CrossRefGoogle Scholar
  57. Ralph S, Petras M (1997) Genotoxicity monitoring of small bodies of water using two species of tadpoles and the alkaline single cell gel (comet) assay. Environ Mol Mutagen. 29:418–430CrossRefGoogle Scholar
  58. Ralph S, Petras M, Pandrangi R, Vrzoc M (1996) Alkaline single-cell gel (comet) assay and genotoxicity monitoring using two species of tadpoles. Environ Mol Mutagen 28:112–120.  https://doi.org/10.1002/(SICI)1098-2280(1996)28:2%3c112:AID-EM7%3e3.0.CO;2-H CrossRefGoogle Scholar
  59. Rowe C, Sadinski W, Dunson W (1992) Effects of acute and chronic acidification on three larval amphibians that breed in temporary ponds. Arch Environ Contam Toxicol 23:339–350.  https://doi.org/10.1007/BF00216243 CrossRefGoogle Scholar
  60. Silvano D, Azevedo-Ramos C, La Marca E, Coloma LA, Ron S, Langone J, Baldo D, Hardy J (2010) Dendropsophus minutus. IUCN Red List Threat Species 2010:e.T55565A11332552Google Scholar
  61. Silvano DL, Segalla MV (2005) Conservação de anfíbios no Brasil. Megadiversidade 1(1):79–86Google Scholar
  62. Singh NP, McCoy MT, Tice RR, Schneider EL (1988) A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 175:184–191.  https://doi.org/10.1016/0014-4827(88)90265-0 CrossRefGoogle Scholar
  63. Soloneski S, Ruiz de Arcaute C, Larramendy ML (2016) Genotoxic effect of a binary mixture of dicamba- and glyphosate-based commercial herbicide formulations on Rhinella arenarum (Hensel, 1867) (Anura, Bufonidae) late-stage larvae. Environ Sci Pollut Res 23:17811–17821.  https://doi.org/10.1007/s11356-016-6992-7 CrossRefGoogle Scholar
  64. Sparling DW, Fellers GM (2009) Toxicity of two insecticides to California, USA, anurans and its relevance to declining amphibian populations. Environ Toxicol Chem 28:1696.  https://doi.org/10.1897/08-336.1 CrossRefGoogle Scholar
  65. Sparling D, Linder G, Bishop C, Krest S (2010) Ecotoxicology of amphibians and reptiles, 2nd edn. CRC Press, Boca Raton.  https://doi.org/10.1201/ebk1420064162 CrossRefGoogle Scholar
  66. Valencia LC, García A, Ramírez-Pinilla MP, Fuentes JL (2011) Estimates of DNA damage by the comet assay in the direct-developing frog Eleutherodactylus johnstonei (Anura, Eleutherodactylidae). Genet Mol Biol 34:681–688.  https://doi.org/10.1590/S1415-47572011005000048 CrossRefGoogle Scholar
  67. Vredenburg VT (2004) Reversing introduced species effects: experimental removal of introduced fish leads to rapid recovery of a declining frog. Proc Natl Acad Sci USA 101:7646–7650.  https://doi.org/10.1073/pnas.0402321101 CrossRefGoogle Scholar
  68. Wang M-Z, Jia X-Y (2009) Low levels of lead exposure induce oxidative damage and DNA damage in the testes of the frog Rana nigromaculata. Ecotoxicology 18:94–99.  https://doi.org/10.1007/s10646-008-0262-5 CrossRefGoogle Scholar
  69. Wells KD (2007) Ecology and behavior of amphibians. University of Chicago Press, ChicagoCrossRefGoogle Scholar
  70. Whitfield SM, Lips KR, Donnelly MA (2016) Amphibian decline and conservation in Central America. Copeia 104:351–379.  https://doi.org/10.1643/CH-15-300 CrossRefGoogle Scholar
  71. Yin XH, Li SN, Zhang L, Zhu GN, Zhuang HS (2008) Evaluation of DNA damage in Chinese toad (Bufo bufo gargarizans) after in vivo exposure to sublethal concentrations of four herbicides using the comet assay. Ecotoxicology 17:280–286.  https://doi.org/10.1007/s10646-008-0195-z CrossRefGoogle Scholar
  72. Zhelev Z, Tsonev S, Georgieva K, Arnaudova D (2018) Health status of Pelophylax ridibundus (Amphibia: Ranidae) in a rice paddy ecosystem in Southern Bulgaria and its importance in assessing environmental state: hematological parameters. Environ Sci Pollut Res 25:7884–7895.  https://doi.org/10.1007/s11356-017-1109- CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Macks Wendhell Gonçalves
    • 1
    • 5
  • Calebe Bertolino Marins de Campos
    • 1
    • 5
  • Fernanda Ribeiro Godoy
    • 5
  • Priscilla Guedes Gambale
    • 4
  • Hugo Freire Nunes
    • 1
  • Fausto Nomura
    • 2
    • 3
  • Rogério Pereira Bastos
    • 2
    • 3
    • 4
  • Aparecido Divino da Cruz
    • 5
  • Daniela de Melo e Silva
    • 1
    • 3
    • 5
    Email author
  1. 1.Campus II, Itatiaia, Laboratório de Mutagênese, Programa de Pós-Graduação em Genética e Biologia Molecular, Departamento de Genética, Instituto de Ciências Biológicas 1Universidade Federal de GoiásGoiâniaBrazil
  2. 2.Programa de Pós-Graduação em Ecologia e Evolução, Instituto de Ciências BiológicasUniversidade Federal de GoiásGoiâniaBrazil
  3. 3.Programa de Pós-Graduação em Biodiversidade AnimalUniversidade Federal de GoiásGoiâniaBrazil
  4. 4.Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos ContinentaisUniversidade Estadual de MaringáMaringáBrazil
  5. 5.Departamento de Biologia, Núcleo de Pesquisas RepliconPontifícia Universidade Católica de GoiásGoiâniaBrazil

Personalised recommendations