Advertisement

Glyphosate- and Fipronil-Based Agrochemicals and Their Mixtures Change Zebrafish Behavior

  • Fabiele da Costa Chaulet
  • Heloísa Helena de Alcantara Barcellos
  • Débora Fior
  • Aline Pompermaier
  • Gessi Koakoski
  • João Gabriel Santos da Rosa
  • Michele Fagundes
  • Leonardo José Gil BarcellosEmail author
Original Research

Abstract

Environmental contamination caused by the human occupancy and economic activities that generate a wide range of contaminated effluents that reach natural water resources, is a current reality. Residues of agrichemicals used in plant production were detected in different environments and in different countries. Among these agrochemicals, we studied a glyphosate-based herbicide (GBH), a fipronil-based insecticide (FBI), and their mixtures (GBH + FBI). Zebrafish exposed to 3 and 5 mg/L of GBH spend more time in the top zone and less time in the bottom zone. Fish exposed to 0.009 and 0.018 mg/L of FBI spent less time in the bottom zone, whereas zebrafish exposed to the three GBH + FBI mixtures spend more time in the top zone compared with unexposed control fish. This clear anxiolytic pattern, in an environmental context, can directly impair the ability of fish to avoid or evade predators. We concluded that both glyphosate-based herbicide and fipronil-based insecticide and their mixtures alter zebrafish behavior, which may result in significant repercussions on the maintenance of the species as well as on the food chain and the ecosystem.

Notes

Acknowledgements

This study was funded by the Universidade de Passo Fundo, CNPq and CAPES, by the Programa de Apoio à Pós-Graduação (PROAP). A.P. holds post-graduation CAPES fellowship, and L.J.G.B. holds CNPq research fellowship (303263/2018-0). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

References

  1. Annett R, Habibi HR, Hontela A (2014) Impact of glyphosate and glyphosate-based herbicides on the freshwater environment. J Appl Toxicol 2014:458–479.  https://doi.org/10.1002/jat.2997 CrossRefGoogle Scholar
  2. Bedient PB, Horsak RD, Schlenk D et al (2005) Environmental Impact of Fipronil to the Louisiana Crawfish Industry Environmental Impact of Fipronil to the Louisiana Crawfish Industry. Environ Forensics 6:289–299.  https://doi.org/10.1080/15275920500194530 CrossRefGoogle Scholar
  3. Bonifacio FA, Cazenave J, Bacchetta C et al (2016) Alterations in the general condition: biochemical parameters and locomotor activity in Cnesterodon decemmaculatus exposed to commercial formulations of chlorpyrifos, glyphosate and their mixtures. Ecol Indic 67:88–97.  https://doi.org/10.1016/j.ecolind.2016.02.011 CrossRefGoogle Scholar
  4. Bridi D, Altenhofen S, Gonzalez JB, et al (2017) Glyphosate and Roundup® alter morphology and behavior in zebrafish. Toxicology  https://doi.org/10.1016/j.tox.2017.10.007
  5. Cachat J, Stewart A, Grossman L et al (2010) Measuring behavioral and endocrine responses to novelty stress in adult zebrafish. Nat Protoc 5:1786–1799.  https://doi.org/10.1038/nprot.2010.140 CrossRefGoogle Scholar
  6. Cericato L, Neto JGM, Fagundes M, et al (2008) Cortisol response to acute stress in jundiá Rhamdia quelen acutely exposed to sub-lethal concentrations of agrichemicals. Comp Biochem Physiol - C Toxicol Pharmacol 148:.  https://doi.org/10.1016/j.cbpc.2008.06.008
  7. Cericato L, Neto JGM, Kreutz LC, et al (2009) Responsiveness of the interrenal tissue of Jundiá (Rhamdia quelen) to an in vivo ACTH test following acute exposure to sublethal concentrations of agrichemicals. Comp Biochem Physiol - C Toxicol Pharmacol 149:.  https://doi.org/10.1016/j.cbpc.2008.09.002
  8. Colwill RM, Creton R (2011) Locomotor behaviors in zebrafish (Danio rerio) larvae. Behav Processes 86:222–229.  https://doi.org/10.1016/j.beproc.2010.12.003 CrossRefGoogle Scholar
  9. da Rosa JGS, de Abreu MS, Giacomini ACV, et al (2016) Fish Aversion and Attraction to Selected Agrichemicals. Arch Environ Contam Toxicol 71:.  https://doi.org/10.1007/s00244-016-0300-x
  10. Dametto FS, Fior D, Idalencio R, et al (2018) Feeding regimen modulates zebrafish behavior. PeerJ 1–17.  https://doi.org/10.7717/peerj.5343
  11. Deblonde T, Cossu-leguille C, Hartemann P (2011) International Journal of Hygiene and Emerging pollutants in wastewater: a review of the literature. Int J Hyg Environ Health 214:442–448.  https://doi.org/10.1016/j.ijheh.2011.08.002 CrossRefGoogle Scholar
  12. Ferreira D, Motta AC, Kreutz LC, et al (2010) Assessment of oxidative stress in Rhamdia quelen exposed to agrichemicals. Chemosphere 79.  https://doi.org/10.1016/j.chemosphere.2010.03.024
  13. Galli A, De Souza D, Garbellini GS et al (2006) Utilização de técnicas eletroanalíticas na determinação de pesticidas em alimentos. Quim Nova 29:105–112CrossRefGoogle Scholar
  14. Glusczak L, Miron S, Moraes BS et al (2007) Acute effects of glyphosate herbicide on metabolic and enzymatic parameters of silver catfish (Rhamdia quelen). Comp Biochem Physiol Part C Toxicol Pharmacol 146:519–524.  https://doi.org/10.1016/j.cbpc.2007.06.004 CrossRefGoogle Scholar
  15. Grillner S (2003) The motor infrastructure: from ion channels to neurnal networks. Nat Rewies Neurosci 4:573–586.  https://doi.org/10.1038/nrn1137 CrossRefGoogle Scholar
  16. Hasenbein S, Lawler SP, Geist J, Connon RE (2016) A long-term assessment of pesticide mixture effects on aquatic invertebrate communities. Environ Toxicol Chem 35:218–232.  https://doi.org/10.1002/etc.3187 CrossRefGoogle Scholar
  17. Hidalgo C, Rios C, Hidalgo M et al (2004) Improved couple-column liquid chromatographic method for the determination of glyphosate and aminomethyl-phosphonic acid residues in environmental waters. J Chromatogr A 1035:153–157CrossRefGoogle Scholar
  18. Jackson D, Cornell C, Luukinen B, et al (2009) Fipronil technical fact sheet. Natl Pestic Inf Cent 1–3Google Scholar
  19. Jiraungkoorskul W, Upatham ES, Kruatrachue M (2002) Histopathological effects of Roundup, a Glyphosate Herbicide, on Nile tilapia (Oreochromis niloticus). Sci Asia 28:121–127CrossRefGoogle Scholar
  20. Kalueff AV, Gebhardt M, Stewart AM et al (2013) Towards a comprehensive catalog of zebrafish behavior 1.0 and beyond. Zebrafish 10:70–86CrossRefGoogle Scholar
  21. Kelley JL, Magurran A (2003) Learned predator recognition and antipredator responses in fishes. Fish Fish 4:216–226CrossRefGoogle Scholar
  22. Kim K, Jeon H, Choi S et al (2018) Chemosphere combined toxicity of endosulfan and phenanthrene mixtures and induced molecular changes in adult Zebra fish (Danio rerio). Chemosphere 194:30–41.  https://doi.org/10.1016/j.chemosphere.2017.11.128 CrossRefGoogle Scholar
  23. Koakoski G, Quevedo RM, Ferreira D, et al (2014) Agrichemicals chronically inhibit the cortisol response to stress in fish. Chemosphere 112:.  https://doi.org/10.1016/j.chemosphere.2014.02.083
  24. Kysil EV, Meshalkina DA, Frick EE, et al (2017) Comparative analyses of Zebrafish anxiety-like behavior using conflict-based novelty tests. Zebrafish 14:.  https://doi.org/10.1089/zeb.2016.1415
  25. Langiano C, Martinez CBR (2008) Toxicity and effects of a glyphosate-based herbicide on the Neotropical fish Prochilodus lineatus. Comp Biochem Physiol C: Toxicol Pharmacol 147:222–231.  https://doi.org/10.1016/j.cbpc.2007.09.009 Google Scholar
  26. Lopes FM, Caldas SS, Primel EG, Rosa EC (2016) Glyphosate adversely affects Danio rerio males: acetylcholinesterase modulation and oxidative stress. Zebrafish 14:97–105.  https://doi.org/10.1089/zeb.2016.1341 CrossRefGoogle Scholar
  27. López-corcuera B, Geerlings A, Aragón C et al (2009) Glycine neurotransmitter transporters: an update Glycine neurotransmitter transporters: an update. Mol Membr Biol 7688:13–20.  https://doi.org/10.1080/09687680010028 Google Scholar
  28. Lushchak OV, Kubrak OI, Storey JM et al (2009) Chemosphere Low toxic herbicide Roundup induces mild oxidative stress in goldfish tissues. Chemosphere 76:932–937.  https://doi.org/10.1016/j.chemosphere.2009.04.045 CrossRefGoogle Scholar
  29. Mesa MG, Poe TP, Gadomski DM et al (1994) Are all prey created equal? a review and synthesis of differential predation on prey in substandard condition. J Fish Biol 45:81–96CrossRefGoogle Scholar
  30. Oggier DM, Weisbrod CJ, Stoller AM et al (2010) Effects of diazepam on gene expression and link to physiological effects in different life stages in zebrafish Danio rerio. Environ Sci Technol 44:7685–7691CrossRefGoogle Scholar
  31. Oruç E, Usta D (2007) Evaluation of oxidative stress responses and neurotoxicity potential of diazinon in different tissues of Cyprinus carpio. Environ Toxicol Pharmacol 23:48–55.  https://doi.org/10.1016/j.etap.2006.06.005 CrossRefGoogle Scholar
  32. Qian Y, Wang C, Wan J et al (2017) Fipronil-induced enantioselective developmental toxicity to zebrafish embryo-larvae involves changes in DNA methylation. Sci Rep 7:2284.  https://doi.org/10.1038/s41598-017-02255-5 CrossRefGoogle Scholar
  33. Sanches AL, Daam MA, Freitas EC et al (2018) Lethal and sublethal toxicity of abamectin and difenoconazole (individually and in mixture) to early life stages of zebra fish. Chemosphere 210:531–538.  https://doi.org/10.1016/j.chemosphere.2018.07.027 CrossRefGoogle Scholar
  34. Sandrini JZ, Rola RC, Lopes FM et al (2013) Effects of glyphosate on cholinesterase activity of the mussel Perna perna and the fish Danio rerio and Jenynsia multidentata: in vitro studies. Aquat Toxicol 130–131:171–173.  https://doi.org/10.1016/j.aquatox.2013.01.006 CrossRefGoogle Scholar
  35. Sinhorin VD, Sinhorin AP, Teixeira JM et al (2014) Metabolic and behavior changes in surubim acutely exposed to a glyphosate-based herbicide. Arch Environ Contam Toxicol 67:659–667.  https://doi.org/10.1007/s00244-014-0073-z CrossRefGoogle Scholar
  36. Steenbergen PJ, Richardson MK, Champagne DL (2011) Patterns of avoidance behaviours in the light/dark preference test in young juvenile zebrafish: a pharmacological study. Behav Brain Res 222:15–25.  https://doi.org/10.1016/j.bbr.2011.03.025 CrossRefGoogle Scholar
  37. Stewart WJ, Cardenas GS, Mchenry MJ (2013) Zebrafish larvae evade predators by sensing water flow. J Exp Biol 2016:388–398.  https://doi.org/10.1242/jeb.072751 CrossRefGoogle Scholar
  38. Velasques RR, Sandrini JZ, Eduardo C (2016) Roundup in Zebrafish: effects on oxidative status and gene expression. Zebrafish 13:432–441.  https://doi.org/10.1089/zeb.2016.1259 CrossRefGoogle Scholar
  39. Wang C, Qian Y, Zhang X et al (2016) A metabolomic study of fipronil for the anxiety-like behavior in zebra fish larvae at environmentally relevant levels*. Environ Pollut 211:252–258.  https://doi.org/10.1016/j.envpol.2016.01.016 CrossRefGoogle Scholar
  40. Wang Y, Lv L, Yu Y et al (2017) Single and joint toxic effects of five selected pesticides on the early life stages of zebra fish (Denio rerio). Chemosphere 170:61–67.  https://doi.org/10.1016/j.chemosphere.2016.12.025 CrossRefGoogle Scholar
  41. Wang Y, Wu S, Chen J et al (2018) Single and joint toxicity assessment of four currently used pesticides to zebra fish (Danio rerio) using traditional and molecular endpoints. Chemosphere 192:14–23.  https://doi.org/10.1016/j.chemosphere.2017.10.129 CrossRefGoogle Scholar
  42. Weis JS, Smith G, Zhou T et al (2001) Effects of contaminants on behavior: biochemical mechanisms and ecological consequences: killifish from a contaminated site are slow to capture prey and escape predators; altered neurotransmitters and thyroid may be responsible for this behavior, which may produce population changes in the fish and their major prey, the grass shrimp. BioScience 51:209–217CrossRefGoogle Scholar
  43. Wilde GE, Whitworth RJ, Claassen M, Shufran RA (2001) Seed treatment for control of wheat insects and its effect on yield 1. J Agric Urban Entomol 18:1–11Google Scholar
  44. Yang Y, Ma H, Zhou J et al (2014) Joint toxicity of permethrin and cypermethrin at sublethal concentrations to the embryo-larval zebrafish. Chemosphere 96:146–154.  https://doi.org/10.1016/j.chemosphere.2013.10.014 CrossRefGoogle Scholar
  45. Zanella R, Primel E, Gonçalves F et al (2003) Development and validation of a high-performance liquid chromatographic procedure for the determination of herbicide residues in surface and agriculture waters. J Sep Sci 26:935–938CrossRefGoogle Scholar
  46. Zhang J, Liu L, Ren L et al (2017a) The single and joint toxicity effects of chlorpyrifos and beta-cypermethrin in zebrafish (Danio rerio) early life stages. J Hazard Mater 334:121–131.  https://doi.org/10.1016/j.jhazmat.2017.03.055 CrossRefGoogle Scholar
  47. Zhang S, Xu J, Kuang X et al (2017b) Biological impacts of glyphosate on morphology, embryo biomechanics and larval behavior in zebra fish (Danio rerio). Chemosphere 181:270–280.  https://doi.org/10.1016/j.chemosphere.2017.04.094 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Fabiele da Costa Chaulet
    • 1
  • Heloísa Helena de Alcantara Barcellos
    • 2
    • 3
  • Débora Fior
    • 4
  • Aline Pompermaier
    • 1
  • Gessi Koakoski
    • 4
  • João Gabriel Santos da Rosa
    • 5
  • Michele Fagundes
    • 1
  • Leonardo José Gil Barcellos
    • 1
    • 2
    • 3
    • 4
    Email author
  1. 1.Programa de Pós-Graduação em Ciências AmbientaisUniversidade de Passo Fundo (UPF)Passo FundoBrazil
  2. 2.Curso de Medicina VeterináriaUniversidade de Passo Fundo (UPF)Passo FundoBrazil
  3. 3.Programa de Pós-Graduação em FarmacologiaUniversidade Federal de Santa Maria (UFSM)Santa MariaBrazil
  4. 4.Programa de Pós-Graduação em BioexperimentaçãoUniversidade de Passo Fundo (UPF)Passo FundoBrazil
  5. 5.Curso de Medicina VeterináriaUniSociescBlumenauBrazil

Personalised recommendations