Advertisement

Trophic Structure and Biomagnification of Total Mercury in Ray Species Within a Benthic Food Web

  • Daniela A. Murillo-Cisneros
  • Todd M. O’Hara
  • Fernando R. Elorriaga-Verplancken
  • Alberto Sánchez-González
  • Emigdio Marín-Enríquez
  • Ana J. Marmolejo-Rodríguez
  • Felipe Galván-MagañaEmail author
Article

Abstract

Stable isotopes of C (δ13C) and N (δ15N) were used to explore the trophic structure and evaluate mercury (Hg) biomagnification in the food web of muscle of three commercially important ray species from the Pacific coast of Baja California Sur (PCBCS): the shovelnose guitarfish (Pseudobatos productus), banded guitarfish (Zapteryx exasperata), and bat ray (Myliobatis californica). The food web of these ray species predominately consisted of zooplankton, three species of fish, and five species of invertebrates. Mean δ15N values in all species ranged from 10.54 ± 0.18‰ in zooplankton to 17.84 ± 0.81‰ in the shovelnose guitarfish. Mean δ13C values ranged from − 22.05 ± 0.75‰ in the red crab to − 15.93 ± 0.78‰ in the bat ray. Mean total Hg concentration ([THg]) in all species ranged from 0.0009 ± 0.0002 mg kg−1 ww in zooplankton to 0.24 ± 0.19 mg kg−1 ww in the banded guitarfish. The food web magnification factor was 6.38 and significantly greater than 1.0. The present study describes [THg] biomagnification in the benthic food web of three ray species of the PCBCS. This provides an important baseline knowledge of the biomagnification dynamics and pathways of Hg in this environment for these multiple interacting species.

Notes

Acknowledgements

The authors thank the fishermen from Bahía Tortugas for their help in acquisition of samples. DAMC thanks CONACYT and BEIFI for the scholarship. The Wildlife Toxicology Laboratory at University of Alaska Fairbanks, provided support for THg analyses. FREV and FGM thanks Instituto Politécnico Nacional for the support received through the Contracting Excellence Program and Fellowship EDI and COFAA. To Project “Ecología trófica de los elasmobranquios en Bahía Tortugas, Baja California Sur.” Grant number SIP:20170563.

Compliance with Ethical Standards

Competing interests

The authors declare that they have no competing interests.

Data Availability

Data pertaining to this manuscript are deposited in text, tables, and figures.

References

  1. Almazán-Becerril A, Rivas D, García-Mendoza E (2012) The influence of mesoscale physical structures in the phytoplankton taxonomic composition of the subsurface chlorophyll maximum off western California. Deep Sea Res I 70:91–102Google Scholar
  2. Atwell L, Hobson KA, Welch HE (1998) Biomagnification and bioaccumulation of mercury in an arctic marine food web: insights from stable nitrogen isotope analysis. Can J Fish Aquat Sci 55(5):1114–1121Google Scholar
  3. Aurioles-Gamboa D (1992) Inshore-offshore movements of pelagic red crabs Pleuroncodes planipes (Decapoda, Anomura, Galatheidae) off the Pacific coast of Baja California Sur, México. Crustaceana 62(1):71–84Google Scholar
  4. Aurioles-Gamboa D, Pérez-Flores R (1997) Seasonal and bathymetric changes in feeding habits of the benthic red crab Pleuroncodes planipes (Decapoda, Anomura, Galatheidae) off the Pacific coast of Baja California Sur, Mexico. Crustaceana 70(3):272–287Google Scholar
  5. Beldowska M, Mudrak-Cegiołka S (2017) Mercury concentration variability in the zooplankton of the southern Baltic coastal zone. Prog Oceanogr 159:73–85Google Scholar
  6. Blanco-Parra MDP, Galván-Magaña F, Márquez-Farías JF, Niño-Torres CA (2012) Feeding ecology and trophic level of the banded guitarfish, Zapteryx exasperata, inferred from stable isotopes and stomach contents analysis. Environ Biol Fishes 95:65–77Google Scholar
  7. Borga K, Kidd KA, Muir DCG, Berglund O, Conder JM, Gobas FAPC, Kucklick J, Malm O, Powell DE (2011) Trophic magnification factors: considerations of ecology, ecosystems, and study design. Integr Environ Assess Manag 8(1):64–84Google Scholar
  8. Cai Y, Rooker JR, Gill GA, Turner JP (2007) Bioaccumulation of mercury in pelagic fishes from the northern Gulf of Mexico. Can J Fish Aquat Sci 64:458–469Google Scholar
  9. Campbell LM, Norstrom RJ, Hobson KA, Muir DCG, Backus S, Fisk AT (2005) Mercury and other trace elements in a pelagic Arctic marine food web (Northwater Polynya, Baffin Bay). Sci Total Environ 351–352:247–263Google Scholar
  10. Castañeda-Fernández-De-Lara V, Serviere-Zaragoza E, Hernández-Vázquez S, Butler MJ (2005) Feeding ecology of juvenile spiny lobster, Panulirus interruptus, on the Pacific coast of Baja California Sur, Mexico. N Z J Mar Fresh 39(2):425–435Google Scholar
  11. Chen X, Yang L, Xiao L, Miao A, Xi B (2012) Nitrogen removal by denitrification during cyanobaterial blooms in Lake Taihu. J Freshw Ecol 27(2):243–258Google Scholar
  12. Choy CA, Popp BN, Keneko JJ, Drazen JC (2009) The influence of depth on mercury levels in pelagic fishes and their prey. Proc Nat Acad Sci 106(33):13865–13869Google Scholar
  13. Curiel-Godoy P, Simental-Anguiano MR, Galván-Magaña F (2016) Hábitos alimentarios de la raya Guitarra Rhinobatos productus (Ayres, 1854), en Bahía Tortugas, Baja California Sur. Cienc Pesq 24:55–68Google Scholar
  14. Cyr A, Sergeant CJ, Lopez JA, O’Hara T (2016) Assessing the influence of migration barriers and feeding ecology on total mercury concentrations in Dolly Varden (Salvelinus malma) from a glaciated and non-glaciated stream. Sci Total Environ 580:710–718Google Scholar
  15. Dang F, Wang WX (2010) Subcellular controls of mercury trophic transfer to a marine fish. Aquat Toxicol 99:500–506Google Scholar
  16. Dang F, Wang WX (2012) Why mercury concentration increases with fish size? Biokinetic explanation. Environ Pollut 163:192–198Google Scholar
  17. DeForest DK, Brix KV, Adams WJ (2007) Assessing metal bioaccumulation in aquatic environments: the inverse relationship between bioaccumulation factors, trophic transfer factors and exposure concentration. Aquat Toxicol 84:236–246Google Scholar
  18. Dehn LA, Follmann EH, Thomas DL, Sheffield GG, Rosa C, Duffy LK, O’Hara TM (2006) Trophic relationship in an Arctic food web and implications for trace metal transfer. Sci Total Environ 362:103–123Google Scholar
  19. DeVries MS, Martínez del Rio C, Tunstall TS, Dawson TE (2015) Isotopic incorporation rates and discrimination factors in mantis shrimp crustaceans. PLoS ONE 10(4):e0122334Google Scholar
  20. Di Beneditto APM, Bittar VT, Camargo PB, Rezende CE, Kehring HA (2012) Mercury and nitrogen isotope in a marine species from a tropical coastal food web. Arch Environ Contam Toxicol 62:264–271Google Scholar
  21. Domi N, Bouquegneau JM, Das K (2005) Feeding ecology of five commercial shark species of the Celtic Sea through stable isotope and trace metal analysis. Mar Environ Res 60:551–569Google Scholar
  22. Downtown-Hoffmann CA (2007) Biología del pez guitarra Rhinobatos productus (Ayres, 1856), en Baja California Sur, México. Dissertation. Centro Interdisciplinario de Ciencias Marinas, La Paz, Baja California Sur, MexicoGoogle Scholar
  23. Elorduy-Garay JF, Peláez-Mendoza AK (1996) Hábitos alimentarios de Caulolatilus affinis, Gill 1865 (Perciformes: Branchiostegidae) en la Bahía de La Paz, B.C.S, México. Rev Biol Trop 44:241–249Google Scholar
  24. Escobar-Sánchez O, Galván-Magaña F, Rosíles-Martínez R (2011) Biomagnification of mercury and selenium in blue shark Prionace glauca from the Pacific Ocean off Mexico. Biol Trace Elem Res 144:550–559Google Scholar
  25. Ferriss BE, Essington TE (2014) Does trophic structure dictate mercury concentrations in top predators? A comparative analysis of pelagic food webs in the Pacific Ocean. Ecol Model 278:18–28Google Scholar
  26. Fisk AT, Hobson KA, Norstrom RJ (2001) Influence of chemical and biological factors on trophic transfer of persistent organic pollutants in the Northwater Polynya Marine Food Web. Environ Sci Technol 35:732–738Google Scholar
  27. Foster KL, Stern GA, Pazerniuk MA, Hickie B, Walkusz W, Wang F, Macdonald RW (2012) Mercury biomagnification in marine zooplankton food webs in Hudson Bay. Environ Sci Technol 46(23):12952–12959Google Scholar
  28. Gobas FAPC, De Wolf W, Burkhard LP, Verbruggen E, Plotzke K (2009) Revisiting bioaccumulation criteria for POPs and PBT assessments. Integr Environ Assess Manag 5(4):624–637Google Scholar
  29. Gonçalves S, White H (2005) Bootstrap standard error estimates for linear regression. J Am Stat Assoc 100(471):970–979Google Scholar
  30. Harmelin-Vivien M, Bodiguel X, Charmasson S, Loizeau V, Mellon-Duval C, Tronczyński J, Cossa D (2012) Differential biomagnification of PCB, PBDE, Hg and Radiocesium in the food web of the European hake from the NW Mediterranean. Mar Pollut Bull 64(5):974–983Google Scholar
  31. Hosseini M, Bagher-Nabavi SM, Parsa Y (2013) Bioaccumulation of trace mercury in trophic levels of benthic, benthopelagic, pelagic fish species, and sea birds from Arvand River, Iran. Biol Trace Elem Res 156:175–180Google Scholar
  32. Hurtado-Banda R, Gomez-Alvarez A, Márquez-Farías JF, Cordoba-Figueroa M, Navarro-García G, Medina-Juárez LA (2012) Total mercury in liver and muscle tissue of two coastal sharks from the Northwest of Mexico. Bull Environ Contam Toxicol 88(6):971–975Google Scholar
  33. Ikemoto T, Tu NPC, Okuda N, Iwata A, Omori K, Tanabe S, Tuyen BC, Takeuchi I (2008) Biomagnification of trace elements in the aquatic food web in the Mekong Delta Vietnam using stable carbon and nitrogen isotope analysis. Arch Environ Contam Toxicol 54:504–515Google Scholar
  34. Jaeger I, Hop H, Gabrielsen GW (2009) Biomagnification of mercury in selected species from an Arctic marine food web in Svalbard. Sci Total Environ 407:4744–4751Google Scholar
  35. Kehrig HA, Baptista G, Di Beneditto APM, Almeida MG, Rezende CE, Siciliano S, De-Moura JF, Moreira I (2017) Biomagnificación de mercurio en la cadena trófica del delfín moteado del Atlántico (Stenella frontalis), usando el isótopo estable de nitrógeno como marcador ecológico. Rev Biol Mar Oceanogr 52(2):233–244Google Scholar
  36. Lall-Arora H (1948) Observations on the habits and early life history of the batrachoid fish, Porichthys notatus Girard. Copeia 1948(2):89–93Google Scholar
  37. Lavoie RA, Jardine TD, Chumchal MM, Kidd KA, Campbell LM (2013) Biomagnification of mercury in aquatic food webs: a worldwide meta-analysis. Environ Sci Technol 47(23):13385–13394Google Scholar
  38. Lemos-Bisi T, Lepoint G, De Freitas-Azevedo A, Dorneles PR, Flach L, Das K, Malm O, Laison-Brito J (2012) Trophic relationships and mercury biomagnification in Brazilian tropical coastal food webs. Ecol Indic 18:291–302Google Scholar
  39. Maz-Courrau A, López-Vera C, Galván-Magaña F, Escobar-Sánchez O, Rosíles-Martínez R, Sanjuán-Muñoz A (2011) Bioaccumulation and biomagnification of total mercury in four exploited shark species in the Baja California Peninsula, Mexico. Bull Environ Contam Toxicol 88(2):129–134Google Scholar
  40. Minagawa M, Wada E (1984) Stepwise enrichment of δ15N along food chains: further evidence and the relation between δ15N and animal age. Geochim Cosmochim Acta 48:1135–1140Google Scholar
  41. Murillo-Cisneros DA, O’Hara TM, Castellini JM, Sánzhez-González A, Elorriaga-Verplancken FR, Marmolejo-Rodríguez AJ, Marín-Enríquez E, Galván-Magaña F (2018) Mercury concentrations in three ray species from the Pacific coast of Baja California Sur, Mexico: variations by tissue type, sex and length. Mar Pollut Bull 126:77–85Google Scholar
  42. Ordiano-Flores A, Galván-Magaña F, Rosiles-Martínez R (2011) Bioaccumulation of mercury in muscle tissue of yellowfin Tuna, Tunnus albacares, of the eastern Pacific ocean. Biol Trace Elem Res 144:606–620Google Scholar
  43. Pethybridge H, Cossa D, Butler ECV (2010) Mercury in 16 demersal sharks from southeast Australia: biotic and abiotic sources of variation and consumer health implications. Mar Environ Res 69:18–26Google Scholar
  44. Pethybridge H, Butler ECV, Cossa D, Daley R, Boudou A (2012) Trophic structure and biomagnification of mercury in an assemblage of deepwater chondrichthyans from southeastern Australia. Mar Ecol Prog Ser 451:163–174Google Scholar
  45. Phillips CR, Heilprin DJ, Hart MA (1997) Mercury accumulation in barred sand bass (Paralabrax nebulifer) near a large wastewater outfall in the southern California Bight. Mar Pollut Bull 34(2):96–102Google Scholar
  46. Post DM (2002) Using stable isotopes to estimate trophic position: models, methods and assumptions. Ecology 83(3):703–718Google Scholar
  47. Ramírez-Amaro SR, Cartamil D, Galván-Magaña F, González-Barba G, Graham JB, Carrera-Fernández M, Escobar-Sánchez O, Sosa-Nishizaki O, Rochin-Alamillo A (2013) The artisanal elasmobranch fishery of the Pacific coast of Baja California Sur, Mexico, management implications. Sci Mar 77(3):473–487Google Scholar
  48. Rigét F, Moller P, Dietz R, Nielsen TG, Asmund G, Strand J, Larsen MM, Hobson KA (2007) Transfer of mercury in the marine food web of West Greenland. J Environ Monit 9:877–883Google Scholar
  49. Ruelas-Inzunza J, Meza-López G, Páez-Osuna F (2008) Mercury in fish that are dietary importance from the coast of Sinaloa (SE Gulf of California). J Food Compost Anal 21:211–218Google Scholar
  50. Smith-Vaniz B, Robertson R, Dominici-Arosemena A, Molina H, Salas E, Guzman-Mora AG (2010) Paralabrax nebulifer. The IUCN Red List of Threatened Species 2010: e.T183861A8190471. http://dx.doi.org/10.2305/IUCN.UK.2010-3.RLTS.T183861A8190471.en. Accessed 16 Mar 2018
  51. Thera JC, Rumbold DG (2013) Biomagnification of mercury through a subtropical coastal food web off southwest Florida. Environ Toxicol Chem 33(1):65–73Google Scholar
  52. Torres-García RQ (2015) Hábitos alimenticios de la raya murciélago [Myliobatis californica (Gill, 1865)] en Bahía Tortugas Baja California Sur. Dissertation Universidad Michoacana de San Nicolás de Hidalgo, MéxicoGoogle Scholar
  53. Valenzuela-Quiñonez F, Galván-Magaña F, Ebert DA, Aragón-Noriega EA (2017) Feeding habits and trophic level of the shovelnose guitarfish (Pseudobatos productus) in the upper Gulf of California. J Mar Biol Assoc UK 98:1–10Google Scholar
  54. Vázquez-Moreno RA (2015) Hábitos alimentarios de la raya Zapteryx exasperata (Jordan & Gilbert, 1880) (Chondrichthyes: Rhinobatidae) de la zona de Bahía Tortugas, Baja California Sur, México. Dissertation. Universidad del Mar, Oaxaca, MéxicoGoogle Scholar
  55. Willacker JJ, Von-Hippel FA, Ackerly KL, O’Hara TM (2013) Habitat-specific foraging and sex determine mercury concentrations in sympatric benthic and limnetic ecotypes of the three spine stickleback. Environ Toxicol Chem 32(7):1623–1630Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Daniela A. Murillo-Cisneros
    • 1
  • Todd M. O’Hara
    • 2
  • Fernando R. Elorriaga-Verplancken
    • 1
  • Alberto Sánchez-González
    • 1
  • Emigdio Marín-Enríquez
    • 3
  • Ana J. Marmolejo-Rodríguez
    • 1
  • Felipe Galván-Magaña
    • 1
    Email author
  1. 1.Centro Interdisciplinario de Ciencias MarinasInstituto Politécnico NacionalLa PazMexico
  2. 2.Department of Veterinary MedicineUniversity of Alaska FairbanksFairbanksUSA
  3. 3.Centro de Investigaciones Biológicas del NoroesteLa PazMexico

Personalised recommendations