Advertisement

The Evaluation of Air Quality in Albania by Moss Biomonitoring and Metals Atmospheric Deposition

  • Flora Qarri
  • Pranvera LazoEmail author
  • Shaniko Allajbeu
  • Lirim Bekteshi
  • Sonila Kane
  • Trajce Stafilov
Article

Abstract

The air quality of Albania is evaluated by trace metals atmospheric deposition using moss biomonitoring method. Bryophyte moss (Hypnum cupressiforme Hedw.) samples were collected during August and September 2015 from 55 sampling points distributed over the entire territory of Albania. The concentrations of Cr, Cu, Fe, Ni, Pb, V, and Zn in moss samples was determined by ICP-AES, ETAAS (As and Cd), and CVAAS (Hg) analysis. Spatial distribution and temporal trend of the moss elements is discussed in this study. Different variability was found in moss metal concentrations that may reflect their spatial distribution patterns and may identify the location of the areas with high contamination of each element. Compared with the measurements of moss collected in 2010, significant differences were found in the concentrations of As, Cr, Cu, Hg, Ni, Pb, and Zn. The differences between two moss surveys may reflect changes in the bioavailability of the elements resulting from wet and dry deposition respectively during 2015 and 2010 moss biomonitoring survey. The pollution loading index that was applied to judge the content of metal contamination indicated moderate pollution throughout Albania. Examination of the potential ecological risk found that As, Cd, Cr, Hg, Ni, and Pb pose the highest potential ecological risks particularly in the areas with high metal contents. Factor analysis applied to investigate the probable sources of metals in the environment suggested that Al and Fe likely originated from natural sources. As, Cd, Hg, Pb, Cu, Zn, Ni, and Cr likely originated from anthropogenic sources associated with long-range transport, transboundary pollution and local emission sources.

Notes

Acknowledgements

The authors express their gratitude to the staff of the Institute of Chemistry, Faculty of Science, Sts. Cyril and Methodius University, Skopje, Macedonia for help with the ICP-AES analysis of Albanian moss samples. The publishing is supported from University of Vlora through the University Founds for Scientific Research.

References

  1. Agnan Y, Sejalon-Delmas N, Probst A (2013) Comparing early twentieth century and present-day atmospheric pollution in SW France: a story of lichens. Environ Pollut 172:139–148CrossRefGoogle Scholar
  2. Allajbeu S, Yushin NS, Lazo P, Qarri F, Duliu OG, Frontasyeva MV (2016) Atmospheric deposition of rare earth elements in Albania studied by the moss biomonitoring technique neutron activation analysis and GIS technology. Environ Sci Pollut Res 23:14087–14101.  https://doi.org/10.1007/s11356-016-6509-4 CrossRefGoogle Scholar
  3. Allajbeu S, Qarri F, Marku E, Bekteshi L, Ibro V, Frontasyeva MV, Stafilov T, Lazo P (2017) Contamination scale of atmospheric deposition for assessing air quality in Albania evaluated from most toxic heavy metal and moss biomonitoring. Air Qual Atmos Health 10:587–599.  https://doi.org/10.1007/s11869-016-0453-9 CrossRefGoogle Scholar
  4. Amodio M, Catino S, Dambruoso PR, de Gennaro G, Di Gilio A, Giungato P, Laiola E, Marzocca A, Mazzone A, Sardaro A, Tutino M (2014) Atmospheric deposition: sampling procedures, analytical methods, and main recent findings from the scientific literature. Adv Meteorol.  https://doi.org/10.1155/2014/161730 Google Scholar
  5. Antisari LV, Carbone S, Ferronato C, Simoni A, Vianello G (2011) Characterization of heavy metals atmospheric deposition for assessment of urban environmental quality in the Bologna city (Italy). Environ Qual 7:49–63.  https://doi.org/10.6092/issn.2281-4485/3834 Google Scholar
  6. Astel A, Astel K, Biziuk A (2008) PCA and multidimensional visualization techniques united to aid in the bioindication of elements from transplanted Sphagnum palustre moss exposed in Gdansk city area. Environ Sci Pollut Res 15(1):41–50CrossRefGoogle Scholar
  7. ATSDR (1999) Public Health Statement Mercury CAS#: 7439-97-6Google Scholar
  8. ATSDR (2004) Public Health Statement Copper CAS#: 7440-50-8. https://www.atsdr.cdc.gov/ToxProfiles/tp132-c1-b.pdf. Accessed 6 Jan 2019
  9. ATSDR (2005) Public Health Statement.Nickel CAS#: 7440-02-0. https://www.atsdr.cdc.gov/ToxProfiles/tp15-c1-b.pdf. Accessed 6 Jan 2019
  10. ATSDR (2008) Toxicological profile for cadmium. US Department of Health and Human Services, AtlantaGoogle Scholar
  11. ATSDR (2012) Public Health Statement. Chromium CAS # 7440-47-3. https://www.atsdr.cdc.gov/ToxProfiles/tp7-c1-b.pdf. Accessed 6 Jan 2019
  12. Aubert D, LeRoux G, Krachler M, Cheburkin A, Kober B, Shotyk W, Stille P (2006) Origin and flux of atmospheric REE entering an ombrotrophic peat bog in Black Forest (SW Germany): evidence from snow lichens and mosses. Geochim Cosmochim Acta 70:2815–2826CrossRefGoogle Scholar
  13. Balabanova B, Stafilov T, Bačeva K, Šajn R (2010) Biomonitoring of atmospheric pollution with heavy metals in the copper mine vicinity located near Radoviš, Republic of Macedonia. J Environ Sci Health Part A Toxic/Hazard Subst Environ Eng 45(12):1504–1518.  https://doi.org/10.1080/10934529.2010.506097 CrossRefGoogle Scholar
  14. Barandovski L, Cekova M, Frontasyeva MV, Pavlov SS, Stalov T, Steinnes E, Urumov V (2008) Atmospheric deposition of trace element pollutants in Macedonia studied by the moss biomonitoring technique. Environ Monit Assess 138:107–118CrossRefGoogle Scholar
  15. Barandovski L, Frontasyeva VM, Stafilov T, Šajn R, Ostrovnaya MT (2015) Multielement atmospheric deposition in Macedonia studied by the moss biomonitoring technique. Environ Sci Pollut Res 22:16077–16097.  https://doi.org/10.1007/s11356-015-4787-x CrossRefGoogle Scholar
  16. Bekteshi L, Lazo P, Qarri F, Stafilov T (2015) Application of normalization process in the survey of atmospheric deposition of heavy metal in Albania by using moss biomonitoring. Ecol Indic 56:50–59.  https://doi.org/10.1016/j.ecolind CrossRefGoogle Scholar
  17. Boamponsem LK, Adam JI, Dampare SB, Nyarko BJB, Essumang DK (2010) Assessment of atmospheric heavy metal deposition in the Tarkwa gold mining area of Ghana using epiphytic lichens. Nucl Instrum Methods Phys Res Sect B Beam Interact Mater At 268:1492–1501.  https://doi.org/10.1016/j.nimb.2010.01.007 CrossRefGoogle Scholar
  18. Connan O, Maro D, Hébert D, Roupsard P, Goujon R, Letellier B, Le Cavelier S (2013) Wet and dry deposition associated metals (Cd, Pb, Zn, Ni, Hg) in a rural wetland site, Marais Vernier, France. At Environ 67:394–403.  https://doi.org/10.1016/j.atmosenv.2012.11.029 CrossRefGoogle Scholar
  19. Da Silva ALO, Barrocas PRG, do Conto Jacob S, Moreira JC (2005) Dietary intake and health effects of selected toxic elements. Braz J Plant Physiol 17(1):79–93CrossRefGoogle Scholar
  20. Dore AJ, Hallsworth S, McDonald AG, Werner M, Kryza M, Abbot J, Nemitz E, Dore CJ, Malcolm H, Vieno M, Reis S, Fowler D (2014) Quantifying missing annual emission sources of heavy metals in the United Kingdom with an atmospheric transport model. Sci Total Environ 479(480):171–180CrossRefGoogle Scholar
  21. Duffus JH (2002) Heavy metals—a meaningless term? (IUPAC Technical Report). Pure Appl Chem 74(5):793–807CrossRefGoogle Scholar
  22. EMEP Report (2015) Country-specific report for Albania within the CLRTAP and its related Protocols. http://www.msceast.org/index.php/albania. Accessed 13 Mar 2019
  23. EPA QA/G-5S (2002) Guidance on choosing a sampling design for environmental data collection. United States Office of Environmental, Environmental Protection Information Agency Washington, DC 20460, EPA/240/R-02/005Google Scholar
  24. Fernandez JA, Carballeira A (2001) Evaluation of contamination, by different elements, in terrestrial mosses. Arch Environ Contam Toxicol 40:461–468.  https://doi.org/10.1007/s002440010198 CrossRefGoogle Scholar
  25. Fernandez JA, Rey A, Carballeira A (2000) An extended study of heavy metal deposition in Galicia (NW Spain) based on moss analysis. Sci Total Environ 254:31–44.  https://doi.org/10.1016/S0048-9697(00)00431-9 CrossRefGoogle Scholar
  26. Frontasyeva M, Harmens H in collaboration with the participants (2015) Monitoring of atmospheric deposition of heavy metals, nitrogen and pops in Europe using bryophytes. Monitoring Manual, 2015 SurveyGoogle Scholar
  27. Hakanson L (1980) Ecological risk index for aquatic pollution control—a sedimentological approach. Water Res 14:975–1001.  https://doi.org/10.1016/0043-1354(80)90143-8 CrossRefGoogle Scholar
  28. Harmens H, Norris DA, Steinnes E, Kubin E, Piispanen J, Alber R, Aleksiayenak Y, Blum O, Coskun M, Dam M et al (2010) Mosses as biomonitors of atmospheric heavy metal deposition: spatial patterns and temporal trends in Europe. Environ Pollut 158:3144–3156CrossRefGoogle Scholar
  29. Harmens H, Norris DA, Cooper DM, Mills G, Steinnes E, Kubin E, Thöni L, Aboal JR, Alber R, Carballeira A, Coșkun M, De Temmerman L, Frolova M, Gonzáles-Miqueo L, Jeran Z, Leblond S, Liiv S, Maňkovská B, Pesch R, Poikolainen J, Rühling Å, Santamaria JM, Simonèiè P, Schröder W, Suchara I, Yurukova L, Zechmeister HG (2011) Nitrogen concentrations in mosses indicate the spatial distribution of atmospheric nitrogen deposition in Europe. Environ Pollut 159:2852–2860CrossRefGoogle Scholar
  30. Harmens H, Foan L, Simon V, Mills G (2013a) Terrestrial mosses as biomonitors of atmospheric POPs pollution: a review. Environ Pollut 173:245–254CrossRefGoogle Scholar
  31. Harmens H, Norris D, Mills G and the participants of the moss survey (2013b) Heavy metals and nitrogen in mosses: spatial patterns in 2010/2011 and long-term temporal trends in Europe, ICP Vegetation Programme Coordination Centre, Centre for Ecology and Hydrology, Bangor, UK, p 63. http://icpvegetation.ceh.ac.uk. Accessed 25 July 2013
  32. Harmens H, Norris DA, Sharps K, Mills G, Alber R, Aleksiayenak Y, Blum O, Cucu-Man SM, Dam M, De Temmerman L, Ene A, Fernández JA, Martinez-Abaigar J, Frontasyeva M, Godzik B, Jeran Z, Lazo P, Leblond S, Liiv S, Magnússon SH, Maňkovská B, Phil-Karlsson G, Piispanen J, Poikolainen J, Santamaria J, MSkudnik M, Spiric Z, Stafilov T, Steinnes E, Stihi C, Suchara I, Thöni L, Todoran R, Yurukova L, Zechmeister HG (2015) Heavy metal and nitrogen concentrations in mosses are declining across Europe whilst some “hotspots” remain in 2010. Environ Pollut 200:93–104CrossRefGoogle Scholar
  33. Hu H (2002) Human health and heavy metals exposure. In: McCally M (ed) Life support: the environment and human health. MIT Press, CambridgeGoogle Scholar
  34. Järup L (2003) Hazards of heavy metal contamination. Br Med Bull 68(1):167–182.  https://doi.org/10.1093/bmb/ldg032 CrossRefGoogle Scholar
  35. Kelly FJ, Fussell JC (2015) Air pollution and public health: emerging hazards and improved understanding of risk. Environ Geochem Health 37:631–649.  https://doi.org/10.1007/s10653-015-9720-1 CrossRefGoogle Scholar
  36. Lammel G, Brüggemann E, Gnauk T, Müller K, Neusüss C, Röhrl A (2003) A new method to study aerosol source contributions along the tracts of air parcels and its application to the near-ground content aerosol chemical composition in central Europe. J Aerosol Sci 34:1–25CrossRefGoogle Scholar
  37. Landis WG, Durda JL, Brooks ML, Chapman PM, Menzie CA, Stahl RG, Stauber JL (2013) Ecological risk assessment in the context of global climate change. Environ Toxicol Chem 32:79–92.  https://doi.org/10.1002/etc.2047 CrossRefGoogle Scholar
  38. Lazo P, Cullaj A (2002) Determination of the different states of mercury in seawater near the Vlora and Durres Bays. Anal Chem 374:1034–1038CrossRefGoogle Scholar
  39. Lazo P, Reif J (2013) Vlora, an abandoned PVC factory at the mediterranean coast. Mercury pollution, threat to humans, and treatment options. In: Wagner-Döbler I (ed) Bioremediation of mercury: current research and industrial applications. Caister Academic Press, Germany, pp 67–79Google Scholar
  40. Lazo P, Cullaj A, Deda T, Shehu A (2007) Arsenic in soil environment in Albania. In: Battacharia P, Mukherjee AB, Bundschuh J, Zevenhoven JR, Loeppert RH (eds) Arsenic in soils and groundwater environment. Trace metals and other contaminants in the environment. Elsevier, pp 237–256Google Scholar
  41. Lazo P, Bekteshi L, Shehu A (2013) Active moss biomonitoring technique for atmospheric deposition of heavy metals in Elbasan city, Albania. Fresenius Environ Bull 22(1a):213–218Google Scholar
  42. Lazo P, Steinnes E, Qarri F, Allajbeu Sh, Kane S, Stafilov T, Frontasyeva VM, Harmens H (2018) Origin and spatial distribution of metals in moss samples in Albania: a hotspot of heavy metal contamination in Europe. Chemosphere 190:337–349.  https://doi.org/10.1016/j.chemosphere.2017.09.132 CrossRefGoogle Scholar
  43. Maione M, Fowler D, Monks PS, Reis S, Rudich Y, Williams ML, Fuzzi S (2016) Air quality and climate change: designing new win-win policies for Europe. Environ Sci Policy 65:48–57.  https://doi.org/10.1016/j.envsci.2016.03.011 CrossRefGoogle Scholar
  44. Mathews MD (1996) Importance of sampling design and density in target recognition. In: Schumacer D, Abrams MA (eds) Hydrocarbon migration and its near-surface expression, AAPG Memoir 66, pp 243–253Google Scholar
  45. Matschullat J, Ottenstein R, Reimann C (2000) Geochemical background—can we calculate it? Environ Geol 39(9):990–1000CrossRefGoogle Scholar
  46. Morais S, e Costa FG, de Lourdes Pereira M (2012) Heavy Metals and Human Health, Environmental Health—Emerging Issues and Practice, Prof. Jacques Oosthuizen (ed) ISBN: 978-953- 307-854-0. InTech. http://www.intechopen.com/books/environmental-health-emerging-issuesand-practice/heavy-metals-and-human-health. Accessed 29 Dec 2018
  47. Morales-Boquero RM, Villena EP, Reche I (2013) Chemical signature of Saharan dust on dry and wet atmospheric deposition in the south-western Mediterranean region. Tellus B Chem Phys Meteorol.  https://doi.org/10.3402/tellusb.v65i0.18720 Google Scholar
  48. Morawska L, Thomas S, Bofinger N, Wainwright D, Neale D (1998) Comprehensive characterization of aerosols in a subtropical urban atmosphere: particle size distribution and correlation with gaseous pollutants. Atmos Environ 32:2467–2478CrossRefGoogle Scholar
  49. NAMR (2010) Mineral resources in Albania. http://www.akbn.gov.al/images/pdf/publikime/Minierat.pdf. Accessed 3 Feb 2017
  50. Nriagu JO (1989) A global assessment of natural sources of atmospheric trace metals. Nature 338:47–49CrossRefGoogle Scholar
  51. Nriagu JO, Pacyna JF (1988) Quantitative assessment of worldwide contamination of air, water, and soils by trace metals. Nature 333:134–139CrossRefGoogle Scholar
  52. Perlwitz JP, García-Pand CP, Miller RL (2015) Predicting the mineral composition of dust aerosols Part 1. Representing key processes. Atmos Chem Phys 15:11593–11627CrossRefGoogle Scholar
  53. Qarri F, Lazo P, Stafilov T, Frontasyeva M, Harmens H, Bekteshi L, Baceva K, Goryainova Z (2013) Multi-elements atmospheric deposition study in Albania. Environ Sci Pollut Res 21:2506–2518.  https://doi.org/10.1007/s11356-013-2091-1 CrossRefGoogle Scholar
  54. Qarri F, Lazo P, Stafilov T, Bekteshi L, Baceva K, Marka J (2014a) The survey of atmospheric deposition of Al, Cr, Fe, Ni, V and Zn in Albania by using moss biomonitoring and ICP-AES. Air Qual Atmos Health 7:297–307.  https://doi.org/10.1007/s11869-014-0237-z CrossRefGoogle Scholar
  55. Qarri F, Lazo P, Bekteshi L, Stafilov T, Frontasyeva M, Harmens H (2014b) The effect of sampling scheme in the survey of atmospheric deposition of heavy metals in Albania by using moss biomonitoring. Environ Sci Pollut Res 22:2258–2271.  https://doi.org/10.1007/s11356-014-3417-3 CrossRefGoogle Scholar
  56. Rehman K, Fatima F, Waheed I, Akash MSH (2017) Prevalence of exposure to heavy metals and their impact on health consequences. J Cell Biochem 119(1):157–184.  https://doi.org/10.1002/jcb.26234 CrossRefGoogle Scholar
  57. Reimann C, Filzmoser P, Garrett RG (2002) Factor analysis applied to regional geochemical data: problems and possibilities. Appl Geochem 17:185–206CrossRefGoogle Scholar
  58. Salcedo RLR, Alvim Ferraz MCM, Alves CA, Martins FG (1999) Time series analysis of air pollution data. Atmos Environ 33:2361–2372CrossRefGoogle Scholar
  59. Schroeder WH, Dobson M, Kane DM, Johnson ND (1987) Toxic trace elements associated with airborne particulate matter: a review. JAPCA 37(11):1267–1285.  https://doi.org/10.1080/08940630.1987.10466321 CrossRefGoogle Scholar
  60. Spinoni J, Naumann G, Vogt JV (2017) Pan-European seasonal trends and recent changes of drought frequency and severity. Glob Planet Change 148:113–130.  https://doi.org/10.1016/j.gloplacha.2016.11.013 CrossRefGoogle Scholar
  61. Spinoni J, Naumann G, Vogt JV, Barbosaa P (2015) The biggest drought events in Europe from 1950 to 2012. J Hydrol Reg Stud 3:509–524.  https://doi.org/10.1016/j.ejrh.2015.01.001. Accessed 9 Nov 2018CrossRefGoogle Scholar
  62. Stafilov T, Šajn R, Barandovski L, Bačeva AK, Malinovska S (2018) Moss biomonitoring of atmospheric deposition study of minor and trace elements in Macedonia. Air Qual Atmos Health 11(2):137–152.  https://doi.org/10.1007/s11869-017-0529-1 CrossRefGoogle Scholar
  63. Steinnes E, Rühling Å, Lippo H, Makinen A (1997) Reference materials for large-scale metal deposition surveys. Accred Qual Assur 2:243–249CrossRefGoogle Scholar
  64. Steinnes E, Berg T, Sjøbakk TE (2003) Temporal and spatial trends in Hg deposition monitored by moss analysis. Sci Total Environ 304:215–219CrossRefGoogle Scholar
  65. Suter II GW (1995) Guide for performing screening ecological risk assessments at DOE facilities. Environmental Restoration Risk Assessment Program, ES/ER/TM-153, Oak Ridge National Laboratory. https://rais.ornl.gov/documents/tm153. Accessed 9 Feb 2016
  66. Sweet CW, Weiss A, Vermette SJ (1998) Atmospheric deposition of trace metals at three sites near the Great Lakes. Water Air Soil Pollut 103(1–4):423–439.  https://doi.org/10.1023/A:1004905832617 CrossRefGoogle Scholar
  67. Thunis P, Miranda A, Baldasano JM, Blond N, Douros J, Graff A, Janssen S, Juda-Rezler K, Karvosenoja N, Maffei G, Martilli A, Rasoloharimahefa M, Real E, Viaene P, Volta M, White L (2016) Overview of current regional and local scale air quality modelling practices: assessment and planning tools in the EU. Environ Sci Policy 65:13–21.  https://doi.org/10.1016/j.envsci.2016.03.013 CrossRefGoogle Scholar
  68. Tomlinson DC, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in assessment of heavy metals in the estuaries and the formation of pollution index. Helgol Mar Res 33:566–575Google Scholar
  69. Tóth G, Hermann T, Da Silva MR, Montanarella L (2016) Heavy metals in agricultural soils of the European Union with implications for food safety. Environ Int 88:299–309.  https://doi.org/10.1016/j.envint.2015.12.017 CrossRefGoogle Scholar
  70. Viana M, Hammingh P, Colette A, Querol X, Degraeuwe B, Vlieger I, Aardenne J (2014) Impact of maritime transport emissions on coastal air quality in Europe. Atmos Environ 90:96–105.  https://doi.org/10.1016/j.atmosenv.2014.03.046 CrossRefGoogle Scholar
  71. Vinogradov AP (1962) Average contents of chemical elements in the principal type of igneos rocks of the Earth’s crust. Geokhimia 7:641–664Google Scholar
  72. Wangberg I, Munthe J, Pirrone N, Iverfeldt A, Bahlman E, Costa P, Ebinghaus R, Feng X, Ferrara R, Gardfeldt K, Kock H, Lanzillotta E, Mamane Y, Mas F, Melamed E, Osnat Y, Prestbo E, Sommar J, Schmolke S, Spain G, Sprovieri F, Tuncel G (2001) Atmospheric mercury distribution in Northern Europe and in the Mediterranean region. Atmos Environ 35:3019–3025CrossRefGoogle Scholar
  73. Wu Y, Zhang J, Ni Z, Liu S, Jiang Z, Huang X (2018) Atmospheric deposition of trace elements to Daya Bay, South China Sea. Mar Pollut Bull 127:72–683.  https://doi.org/10.1016/j.marpolbul.2017.12.046 Google Scholar
  74. Zechmeister HG, Hohenwallner D, Riss A, Hanus-Illnar A (2003) Variations in heavy metal concentrations in the moss species Abietinella abietina (Hedw.) Fleisch according to sampling time, within site variability and increase in biomass. Sci Total Environ 301(1–3):55–65CrossRefGoogle Scholar
  75. Zhang C, Qiao Q, Piper JDA, Huang B (2011) Assessment of heavy metal pollution from a Fe-smelting plant in urban river. Environ Pollut 159:3057–3070CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of ChemistryUniversity of VloraVloraAlbania
  2. 2.Department of ChemistryFaculty of Natural SciencesTiranaAlbania
  3. 3.Department of ChemistryUniversity of ElbasanElbasanAlbania
  4. 4.Institute of Chemistry, Faculty of ScienceSts. Cyril and Methodius UniversitySkopjeMacedonia

Personalised recommendations