Advertisement

Effect of Landscape Changes on Water Quality and Health Status of Heptapterus mustelinus (Siluriformes, Heptapteridae)

  • N. Vreys
  • M. V. Amé
  • I. Filippi
  • J. Cazenave
  • M. E. Valdés
  • M. A. BistoniEmail author
Article

Abstract

Substances derived from anthropogenic activities induce changes in the physical and chemical characteristics of the aquatic environment. Physicochemical and biological studies are necessary to understand how changes in landscape affect the health of the aquatic environment. The main goal of this study was to evaluate how the landscape at different spatial scales affects (1) water quality and (2) the health status of Heptapterus mustelinus, based on several biomarkers. During the dry season, individuals were caught in three sites with different degrees of anthropogenic activity. The quality of the terrestrial environment was assessed using the Riparian Quality and Land Use Indices. The water quality condition was evaluated using a water quality index, and pesticides and pharmaceuticals were measured in water. The following biomarkers were analyzed in the fish: general health status (Condition Factor, Hepatosomatic index and energetic costs), enzymatic activity (GST, CAT, AchE), carbonyl content in proteins and histopathological responses in liver and gills. The most impacted sites by the presence of pesticides showed more alterations in the surrounding landscape; specially, changes in the riparian area. In this area, biomarkers denoted more damage than in sites with protected riparian zone. Conservation status of riparian ecosystems is crucial in the determination of rivers ecological quality. Our results demonstrate the importance of monitoring the environmental quality through an integrated analysis, using native fish to understand the effects of human activities on the biota.

Graphical abstract

Notes

Acknowledgements

This study was supported by grants from National Research Council (CONICET, PIP 112-201101-01084) and Secretaría de Ciencia y Técnica of the Universidad Nacional de Córdoba (SECYT, 2015/2016.).

Supplementary material

244_2018_593_MOESM1_ESM.docx (24 kb)
Supplementary material 1 (DOCX 24 kb)

References

  1. Amé MV, Pesce SF (2015) Spatial and temporal changes in water quality along the basin. In: Wunderlin DA (ed) The handbook of environmental chemistry. Springer, Berlin Heidelberg, pp 1–19Google Scholar
  2. Ansari S, Ansari BA (2014) Toxic effect of alphamethrin on catalase, reduced glutathione and lipid peroxidation in the gill and liver of zebrafish, Danio rerio. World J Zool 9:155–161.  https://doi.org/10.5829/idosi.wjz.2014.9.3.84291 Google Scholar
  3. Ballesteros ML, Bianchi GE, Carranza M, Bistoni MDLÁ (2007) Endosulfan acute toxicity and histomorphological alterations in Jenynsia multidentata (Anablepidae, Cyprinodontiformes). J Environ Sci Heal B Pestic Food Contam Agric Wastes 42:351–357.  https://doi.org/10.1080/03601230701309577 CrossRefGoogle Scholar
  4. Ballesteros ML, Durando PE, Nores ML et al (2009) Endosulfan induces changes in spontaneous swimming activity and acetylcholinesterase activity of Jenynsia multidentata (Anablepidae, Cyprinodontiformes). Environ Pollut 157:1573–1580.  https://doi.org/10.1016/j.envpol.2009.01.001 CrossRefGoogle Scholar
  5. Ballesteros ML, Rivetti NG, Morillo DO et al (2017) Multi-biomarker responses in fish (Jenynsia multidentata) to assess the impact of pollution in rivers with mixtures of environmental contaminants. Sci Total Environ 595:711–722.  https://doi.org/10.1016/J.SCITOTENV.2017.03.203 CrossRefGoogle Scholar
  6. Barel-Cohen K, Shore LS, Shemesh M et al (2006) Monitoring of natural and synthetic hormones in a polluted river. J Environ Manag 78:16–23.  https://doi.org/10.1016/j.jenvman.2005.04.006 CrossRefGoogle Scholar
  7. Beliaeff B, Burgeot T (2002) Integrated biomarker response: a useful tool for ecological risk assessment. Environ Toxicol Chem 21:1316–1322.  https://doi.org/10.1002/etc.5620210629 CrossRefGoogle Scholar
  8. Bermudez GMA, Jasan R, Plá R, Pignata ML (2011) Heavy metal and trace element concentrations in wheat grains: assessment of potential non-carcinogenic health hazard through their consumption. J Hazard Mater 193:264–271.  https://doi.org/10.1016/J.JHAZMAT.2011.07.058 CrossRefGoogle Scholar
  9. Bermudez GMA, Jasan R, Plá R, Pignata ML (2012) Heavy metals and trace elements in atmospheric fall-out: their relationship with topsoil and wheat element composition. J Hazard Mater 213–214:447–456.  https://doi.org/10.1016/j.jhazmat.2012.02.023 CrossRefGoogle Scholar
  10. Bernet D, Schmidt H, Meier W et al (1999) Histopathology in fish: proposal for a protocol to assess aquatic pollution. J Fish Dis 22:25–34.  https://doi.org/10.1046/j.1365-2761.1999.00134.x CrossRefGoogle Scholar
  11. Bertrand L, Asis R, Monferrán MV, Amé MV (2016a) Bioaccumulation and biochemical response in South American native species exposed to zinc: boosted regression trees as novel tool for biomarkers selection. Ecol Indic 67:769–778.  https://doi.org/10.1016/j.ecolind.2016.03.048 CrossRefGoogle Scholar
  12. Bertrand L, Monferrán MV, Mouneyrac C et al (2016b) Sensitive biomarker responses of the shrimp Palaemonetes argentinus exposed to chlorpyrifos at environmental concentrations: roles of alpha-tocopherol and metallothioneins. Aquat Toxicol 179:72–81.  https://doi.org/10.1016/j.aquatox.2016.08.014 CrossRefGoogle Scholar
  13. Beutler E (1982) Catalase. In: Beutler E (ed) Red cell metabolism, a manual of biochemical methods. Grune and Stratton Inc., New York, pp 105–106Google Scholar
  14. Blevins ZW, Effert EL, Wahl DH, Suski CD (2013) Land use drives the physiological properties of a stream fish. Ecol Indic 24:224–235.  https://doi.org/10.1016/j.ecolind.2012.06.016 CrossRefGoogle Scholar
  15. Bonansea RI, Amé MV, Wunderlin DA (2013) Determination of priority pesticides in water samples combining SPE and SPME coupled to GC-MS. A case study: suquía River basin (Argentina). Chemosphere 90:1860–1869.  https://doi.org/10.1016/j.chemosphere.2012.10.007 CrossRefGoogle Scholar
  16. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254.  https://doi.org/10.1016/0003-2697(76)90527-3 CrossRefGoogle Scholar
  17. Brandão F, Cappello T, Raimundo J et al (2015) Unravelling the mechanisms of mercury hepatotoxicity in wild fish (Liza aurata) through a triad approach: bioaccumulation, metabolomic profiles and oxidative stress. Metallomics 7:1352–1363.  https://doi.org/10.1039/c5mt00090d CrossRefGoogle Scholar
  18. Bueno-Krawczyk ACD, Guiloski IC, Piancini LDS et al (2015) Multibiomarker in fish to evaluate a river used to water public supply. Chemosphere 135:257–264.  https://doi.org/10.1016/j.chemosphere.2015.04.064 CrossRefGoogle Scholar
  19. Cappello T, Brandão F, Guilherme S et al (2016a) Insights into the mechanisms underlying mercury-induced oxidative stress in gills of wild fish (Liza aurata) combining1H NMR metabolomics and conventional biochemical assays. Sci Total Environ 548–549:13–24.  https://doi.org/10.1016/j.scitotenv.2016.01.008 CrossRefGoogle Scholar
  20. Cappello T, Pereira P, Maisano M et al (2016b) Advances in understanding the mechanisms of mercury toxicity in wild golden grey mullet (Liza aurata) by 1H NMR-based metabolomics. Environ Pollut 219:139–148.  https://doi.org/10.1016/j.envpol.2016.10.033 CrossRefGoogle Scholar
  21. Cappello T, Giannetto A, Parrino V et al (2018) Food safety using NMR-based metabolomics: assessment of the Atlantic bluefin tuna, Thunnus thynnus, from the Mediterranean Sea. Food Chem Toxicol 115:391–397.  https://doi.org/10.1016/j.fct.2018.03.038 CrossRefGoogle Scholar
  22. Carranza PM, Oroná C, Cosavella A, Larrosa N (2001) Calidad del agua del río Segundo (Río Xanaes) en relación a la topografía y las actividades antrópicas en la cuenca. Rev Cienc 5:49–61Google Scholar
  23. Casatti L, Teresa FB, Zeni JdO et al (2015) More of the same: high functional redundancy in stream fish assemblages from tropical agroecosystems. Environ Manag 55:1300–1314.  https://doi.org/10.1007/s00267-015-0461-9 CrossRefGoogle Scholar
  24. Cazenave J, Bistoni MdA, Pesce SF, Wunderlin DA (2006) Differential detoxification and antioxidant response in diverse organs of Corydoras paleatus experimentally exposed to microcystin-RR. Aquat Toxicol 76:1–12.  https://doi.org/10.1016/J.AQUATOX.2005.08.011 CrossRefGoogle Scholar
  25. CCME (2013) Canadian Water Quality Guidelines for the protection of aquatic life. http://ceqg-rcqe.ccme.ca/en/index.html. Accessed 03 Jan 2018
  26. Chalar G, Delbene L, González-Bergonzoni I, Arocena R (2013) Fish assemblage changes along a trophic gradient induced by agricultural activities (Santa Lucía, Uruguay). Ecol Indic 24:582–588CrossRefGoogle Scholar
  27. Cheung CCC, Zheng GJ, Li AMY et al (2001) Relationships between tissue concentrations of polycyclic aromatic hydrocarbons and antioxidative responses of marine mussels, Perna viridis. Aquat Toxicol 52:189–203.  https://doi.org/10.1016/S0166-445X(00)00145-4 CrossRefGoogle Scholar
  28. Cunico AM, Agostinho AA, Latini JD (2006) Influência da urbanização sobre as assembléias de peixes em três córregos de Maringá, Paraná. Rev Bras Zool 23:1101–1110.  https://doi.org/10.1590/S0101-81752006000400018 CrossRefGoogle Scholar
  29. Dala-Corte RB, Giam X, Olden JD et al (2016) Revealing the pathways by which agricultural land-use affects stream fish communities in South Brazilian grasslands. Freshw Biol 61:1921–1934.  https://doi.org/10.1111/fwb.12825 CrossRefGoogle Scholar
  30. del Corigliano MdC (2008) Indexes To assess environmental quality in urban rivers [Índices para evaluar la calidad ambiental en ríos serranos urbanos mediante indicadores]. Rev Univ Nac Río Cuarto 28:33–54Google Scholar
  31. Devin S, Burgeot T, Giambérini L et al (2014) The integrated biomarker response revisited: optimization to avoid misuse. Environ Sci Pollut Res 21:2448–2454.  https://doi.org/10.1007/s11356-013-2169-9 CrossRefGoogle Scholar
  32. Di Rienzo JA, Casanofes F, Balzarini MG et al (2016) InfoStat Software Page. InfoStat, CórdobaGoogle Scholar
  33. Ellman GL, Courtney KD, Andres V, Featherstone RM (1961) A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem Pharmacol 7:88–95.  https://doi.org/10.1016/0006-2952(61)90145-9 CrossRefGoogle Scholar
  34. El-Shahawi MS, Hamza A, Bashammakh AS, Al-Saggaf WT (2010) An overview on the accumulation, distribution, transformations, toxicity and analytical methods for the monitoring of persistent organic pollutants. Talanta 80:1587–1597.  https://doi.org/10.1016/J.TALANTA.2009.09.055 CrossRefGoogle Scholar
  35. Etchebarne V (2010) Calidad de agua y de la zona ribereña en sistemas lóticos de regiones ganaderas extensivas y lecheras de la cuenca del Río Santa Lucía. pp 1–45Google Scholar
  36. Fernández L, Bechara JA (2010) Evaluación de las comunidades de peces a lo largo de un río piedemonte que recibe contaminación orgánica (Montañas de Aconquija, Argentina). Acta Biol Colomb 15:79–100Google Scholar
  37. Figueiredo-Fernandes A, Ferreira-Cardoso JV, Garcia-Santos S et al (2007) Histopathological changes in liver and gill epithelium of Nile tilapia, Oreochromis niloticus, exposed to waterborne copper copper. Pesqui Vet Bras 27:103–109.  https://doi.org/10.1590/S0100-736X2007000300004 CrossRefGoogle Scholar
  38. Folch J, Lees M, Stanley GHS (1957) A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem 226:497–509Google Scholar
  39. Gernhöfer M, Pawert M, Schramm M et al (2001) Ultrastructural biomarkers as tools to characterize the health status of fish in contaminated streams. J Aquat Ecosyst Stress Recover 8:241–260.  https://doi.org/10.1023/A:1012958804442 CrossRefGoogle Scholar
  40. González Sagrario MdA, Miglioranza KS, Aizpún de Moreno JE et al (2002) Polychlorinated biphenyls in different trophic levels from a shallow lake in Argentina. Chemosphere 48:1113–1122.  https://doi.org/10.1016/S0045-6535(02)00149-2 CrossRefGoogle Scholar
  41. Granitto M, Rosso JJ, Boveri MB, Rennella AM (2016) Impacto del uso del suelo sobre la condición de ribera en arroyos pampeanos y su relación con la estructura de la comunidad de peces. Biol Acuática 31:19–27Google Scholar
  42. Grote M, Altenburger R, Brack W et al (2005) Ecotoxicological Profiling of Transect River Elbe Sediments. Acta Hydrochim Hydrobiol 33:555–569.  https://doi.org/10.1002/aheh.200400598 CrossRefGoogle Scholar
  43. Guide for the Care and Use of Laboratory Animals (2011) Committee for the Update of the Guide for the Care and Use of Laboratory Animals, 8th edn. National Academies Press, Washington, DC.  https://doi.org/10.17226/12910 Google Scholar
  44. Habig WH, Pabst MJ, Jakoby WB (1974) Glutathione S-Transferases. The first enzymatic step in mercapturic acid formation. J Biol Chem 249:7130–7139Google Scholar
  45. Harguinteguy CA, Schreiber R, Pignata ML (2013) Myriophyllum aquaticum as a biomonitor of water heavy metal input related to agricultural activities in the Xanaes River (Córdoba, Argentina). Ecol Indic 27:8–16.  https://doi.org/10.1016/j.ecolind.2012.11.018 CrossRefGoogle Scholar
  46. Haro JG, Bistoni MA (2007) Peces de Córdoba, 1st ed. Univ. Nacional de Córdoba, CórdobaGoogle Scholar
  47. Hinton DE, Segner H, Braunbeck T (2001) Toxic responses of the liver. In: Schlenk D, Benson WH (eds) Target organ toxicity in marine and freshwater teleost, vol 1. pp 224–268Google Scholar
  48. Hued AC, Oberhofer S, Bistoni MDLÁ (2012) Exposure to a commercial glyphosate formulation (Roundup) alters normal gill and liver histology and affects male sexual activity of Jenynsia multidentata (Anablepidae, cyprinodontiformes). Arch Environ Contam Toxicol 62:107–117.  https://doi.org/10.1007/s00244-011-9686-7 CrossRefGoogle Scholar
  49. Instituto Nacional de Estadística y Censo (INDEC) (2010) Censo nacional. http://www.indec.gov.ar/nivel4_default.asp?id_tema_1=2&id_tema_2=41&id_tema_3=135. Accessed 03 Jan 2018
  50. Jeffrey JD, Hasler CT, Chapman JM et al (2015) Linking landscape-scale disturbances to stress and condition of fish: implications for restoration and conservation. Integr Comp Biol 55:618–630.  https://doi.org/10.1093/icb/icv022 CrossRefGoogle Scholar
  51. Jorgensen SE (ed) (2016) Handbook of ecological models used in ecosystem and environmental management, vol 3. CRC Press, Boca RatonGoogle Scholar
  52. Kerambrun E, Sanchez W, Henry F, Amara R (2011) Are biochemical biomarker responses related to physiological performance of juvenile sea bass (Dicentrarchus labrax) and turbot (Scophthalmus maximus) caged in a polluted harbour? Comp Biochem Physiol C Toxicol Pharmacol 154:187–195.  https://doi.org/10.1016/J.CBPC.2011.05.006 CrossRefGoogle Scholar
  53. Kim W-K, Lee S-K, Jung J (2010) Integrated assessment of biomarker responses in common carp (Cyprinus carpio) exposed to perfluorinated organic compounds. J Hazard Mater 180:395–400.  https://doi.org/10.1016/J.JHAZMAT.2010.04.044 CrossRefGoogle Scholar
  54. King GD (2014) Nutritional condition and stress response of fishes along a gradient of habitat quality in the St. Lawrence River: physiological consequences of anthropogenic habitat degradation. University of Illinois at Urbana–Champaign, UrbanaGoogle Scholar
  55. Krieger R (2010) Hayes’ Handbook of Pesticide Toxicology, 3rd ed. ElsevierGoogle Scholar
  56. Kutschker AC, Brand C, Miserendino MLB (2009) Quality assessment of riparian corridors in streams of northwest Chubut affected by different land use [Evaluación de la calidad de los bosques de ribera en ríos del NO del chubut sometidos a distintos usos de la tierra]. Ecol Austral 19:19–34Google Scholar
  57. Levine RL, Garland D, Oliver CN et al (1990) Determination of carbonyl content in oxidatively modified proteins. Methods Enzymol 186:464–478.  https://doi.org/10.1016/0076-6879(90)86141-H CrossRefGoogle Scholar
  58. Liu S, Ying G-G, Zhao J-L et al (2011) Trace analysis of 28 steroids in surface water, wastewater and sludge samples by rapid resolution liquid chromatography-electrospray ionization tandem mass spectrometry. J Chromatogr A 1218:1367–1378.  https://doi.org/10.1016/J.CHROMA.2011.01.014 CrossRefGoogle Scholar
  59. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275.  https://doi.org/10.1016/0304-3894(92)87011-4 Google Scholar
  60. Maceda-Veiga A, Monroy M, Viscor G, De Sostoa A (2010) Changes in non-specific biomarkers in the Mediterranean barbel (Barbus meridionalis) exposed to sewage effluents in a Mediterranean stream (Catalonia, NE Spain). Aquat Toxicol 100:229–237.  https://doi.org/10.1016/j.aquatox.2010.07.014 CrossRefGoogle Scholar
  61. Maceda-Veiga A, Monroy M, Navarro E et al (2013) Metal concentrations and pathological responses of wild native fish exposed to sewage discharge in a Mediterranean river. Sci Total Environ 449:9–19.  https://doi.org/10.1016/j.scitotenv.2013.01.012 CrossRefGoogle Scholar
  62. Maggioni T, Hued AC, Monferrán MV et al (2012) Bioindicators and biomarkers of environmental pollution in the middle-lower basin of the suquía river (Córdoba, Argentina). Arch Environ Contam Toxicol 63:337–353.  https://doi.org/10.1007/s00244-012-9785-0 CrossRefGoogle Scholar
  63. Maisano M, Cappello T, Natalotto A et al (2017) Effects of petrochemical contamination on caged marine mussels using a multi-biomarker approach: histological changes, neurotoxicity and hypoxic stress. Mar Environ Res 128:114–123.  https://doi.org/10.1016/j.marenvres.2016.03.008 CrossRefGoogle Scholar
  64. Mantyka-Pringle CS, Martin TG, Moffatt DB et al (2014) Understanding and predicting the combined effects of climate change and land-use change on freshwater macroinvertebrates and fish. J Appl Ecol 51:572–581.  https://doi.org/10.1111/1365-2664.12236 CrossRefGoogle Scholar
  65. Menezes C, Ruiz-Jarabo I, Martos-Sitcha JA et al (2015) The influence of stocking density and food deprivation in silver catfish (Rhamdia quelen): a metabolic and endocrine approach. Aquaculture 435:257–264.  https://doi.org/10.1016/j.aquaculture.2014.09.044 CrossRefGoogle Scholar
  66. Munné A, Prat N, Solà C et al (2003) A simple field method for assessing the ecological quality of riparian habitat in rivers and streams: QBR index. Aquat Conserv Mar Freshw Ecosyst 13:147–163.  https://doi.org/10.1002/aqc.529 CrossRefGoogle Scholar
  67. Muñoz L, Weber P, Dressler V et al (2015) Histopathological biomarkers in juvenile silver catfish (Rhamdia quelen) exposed to a sublethal lead concentration. Ecotoxicol Environ Saf 113:241–247.  https://doi.org/10.1016/J.ECOENV.2014.11.036 CrossRefGoogle Scholar
  68. Naiman RJ, Latterell JJ (2005) Principles for linking fish habitat to fisheries management and conservation. J Fish Biol 67:166–185.  https://doi.org/10.1111/j.0022-1112.2005.00921.x CrossRefGoogle Scholar
  69. Ochoa DM, González JF (2008) Estrés oxidativo en peces inducido por contaminantes ambientales. Rev la Fac Med Vet y Zootec 55:115–126.  https://doi.org/10.1007/978-94-017-9541-8 Google Scholar
  70. Oliveira HHP, Liebel S, Rossi SC et al (2015) Mixtures of benzo(a)pyrene, dichlorodiphenyltrichloroethane and tributyltin are more toxic to neotropical fish Rhamdia quelen than isolated exposures. Ecotoxicol Environ Saf 122:106–115.  https://doi.org/10.1016/j.ecoenv.2015.07.023 CrossRefGoogle Scholar
  71. Pandey S, Parvez S, Ansari RA et al (2008) Effects of exposure to multiple trace metals on biochemical, histological and ultrastructural features of gills of a freshwater fish, Channa punctata Bloch. Chem Biol Interact 174:183–192.  https://doi.org/10.1016/J.CBI.2008.05.014 CrossRefGoogle Scholar
  72. Pesce SF, Wunderlin DA (2000) Use of water quality indices to verify the impact of Córdoba City (Argentina) on Suquía a River. Water Res 34(11):2915–2926.  https://doi.org/10.1016/S0043-1354(00)00036-1 CrossRefGoogle Scholar
  73. Pignata ML, Gudio GL, Wannaz ED et al (2002) Atmospheric quality and distribution of heavy metals in Argentina employing Tillandsia capillaris as a biomonitor. Environ Pollut 120:59–68.  https://doi.org/10.1016/S0269-7491(02)00128-8 CrossRefGoogle Scholar
  74. POPRC (Persistent Organic Pollutants Review Commitee) (2010) Report of the Persistent Organic Pollutants Review Committee on the work of its sixth meeting. pp 1–23Google Scholar
  75. Prat N, Rieradevall M, Fortuño P (2012) Metodología FEM para la evaluación del estado ecológico de los ríos mediterráneos. Universidad de Barcelona (España), BarcelonaGoogle Scholar
  76. Rautenberg GE, Ame MV, Monferrán MV et al (2014) A multi-level approach using Gambusia affinis as a bioindicator of environmental pollution in the middle-lower basin of Suquia River. Ecol Indic 48:706–720.  https://doi.org/10.1016/j.ecolind.2014.09.025 CrossRefGoogle Scholar
  77. Ringuelet RA (1975) Zoogeografía y ecología de los peces de aguas continentales de la Argentina y consideraciones sobre las áreas ictiológicas de América del Sur. Ecosur 2:1–122Google Scholar
  78. Scarsbrook MR, Quinn JM, Halliday J, Morse R (2001) Factors controlling litter input dynamics in streams draining pasture, pine, and native forest catchments. New Zeal J Mar Freshw Res 35:751–762.  https://doi.org/10.1080/00288330.2001.9517040 CrossRefGoogle Scholar
  79. Schlenk D, Handy R, Steinert S, Depledge MH, Benson W (2008) Biomarkers. In: The toxicology of fishes. pp 683–732Google Scholar
  80. Seifter S, Dayton S, Novic B, Muntwyler E (1950) Estimation of glycogen with the Anthron reagent.pdf. Arch Biochem 8:191–200Google Scholar
  81. Serafim A, Company R, Lopes B et al (2012) Application of an integrated biomarker response index (IBR) to assess temporal variation of environmental quality in two Portuguese aquatic systems. Ecol Indic 19:215–225.  https://doi.org/10.1016/j.ecolind.2011.08.009 CrossRefGoogle Scholar
  82. Strand M, Merritt RW (1994) Impacts of livestock grazing activities on stream insect communities and the riverine environment. Am Entomol 45:13–29.  https://doi.org/10.1093/ae/45.1.13 CrossRefGoogle Scholar
  83. Strayer DL, Beighley RE, Thompson LC et al (2003) Effects of land cover on stream ecosystems: roles of empirical models and scaling issues. Ecosystems 6:407–423.  https://doi.org/10.1007/s10021-002-0170-0 CrossRefGoogle Scholar
  84. Townsend CR, Doledec S, Norris R et al (2003) The influence of scale and geography on relationships between stream community composition and landscape variables: description and prediction. Freshw Biol 48:768–785.  https://doi.org/10.1046/j.1365-2427.2003.01043.x CrossRefGoogle Scholar
  85. Valdés ME, Amé MV, Bistoni MdA, Wunderlin DA (2014) Occurrence and bioaccumulation of pharmaceuticals in a fish species inhabiting the Suquía River basin (Córdoba, Argentina). Sci Total Environ 472:389–396.  https://doi.org/10.1016/J.SCITOTENV.2013.10.124 CrossRefGoogle Scholar
  86. van der Oost R, Beyer J, Vermeulen NPE (2003) Fish bioaccumulation and biomarkers in en v ironmental risk assessment: a review. Environ Toxicol Pharmacol 13:57–149.  https://doi.org/10.1016/S1382-6689(02)00126-6 CrossRefGoogle Scholar
  87. Vázquez J, Miatello RA, Roqué M (1979) Geografía física de la provincia de Córdoba. Banco Provincia de Córdoba, Córdoba, Argentina. IV. Aguas, pp 139–211Google Scholar
  88. Vieira DB, Akio Shibatta O (2007) Peixes como indicadores da qualidade ambiental do ribeirão Esperança, município de Londrina, Paraná, Brasil. Biota Neotrop 7:57–65.  https://doi.org/10.1590/S1676-06032007000100008 CrossRefGoogle Scholar
  89. Wielgomas B, Krechniak J (2007) Effect of alpha-cypermethrin and chlorpyrifos in a 28-day study on free radical parameters and cholinesterase activity in Wistar rats. Polish J Environ Stud 16:91–95Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. Vreys
    • 1
  • M. V. Amé
    • 2
  • I. Filippi
    • 2
  • J. Cazenave
    • 3
  • M. E. Valdés
    • 2
  • M. A. Bistoni
    • 4
    Email author
  1. 1.Departamento de Diversidad Biológica y Ecología, Facultad de Ciencias Exactas, Físicas y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina
  2. 2.Departamento de Bioquímica Clínica, Centro de Investigaciones en Bioquímica Clínica e Inmunología de Córdoba (CIBICI), CONICET-UNC and Facultad de Ciencias QuímicasUniversidad Nacional de CórdobaCórdobaArgentina
  3. 3.Laboratorio de Ictiología, Instituto Nacional de Limnología (INALI-CONICET-UNL)Santa Fe, Argentina and Facultad de Humanidades y Ciencias (FHUC-UNL)Santa FeArgentina
  4. 4.Instituto de Diversidad y Ecología Animal (IDEA), CONICET-UNC and Facultad de Ciencias Exactas, Físicas y NaturalesUniversidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations