Idiopathic calcium nephrolithiasis with pure calcium oxalate composition: clinical correlates of the calcium oxalate dihydrate/monohydrate (COD/COM) stone ratio

  • Angela Guerra
  • Andrea TicinesiEmail author
  • Franca Allegri
  • Silvana Pinelli
  • Rosalia Aloe
  • Tiziana Meschi
Original Paper


Pure calcium oxalate is the most frequent type of idiopathic kidney stone composition. Fourier transform infrared spectroscopy (FT-IR) allows to detect the ratio of calcium oxalate dihydrate (COD) and monohydrate (COM) crystals in stones, but the clinical significance of this parameter remains uncertain. The objective of this observational study was to verify the association of clinical and laboratory parameters of kidney stone disease with COD/COM ratio in a group of 465 (322 M, age 46 ± 14) patients suffering from idiopathic calcium nephrolithiasis with pure calcium oxalate stones (≥ 97%). Each participant underwent a complete clinical examination, serum chemistry, 24-h urine collection for the determination of the profile of lithogenic risk, and had stones analyzed by FT-IR. Most (62%) of the stones had a COD/COM ratio ≤ 0.25, and the urine chemistry of the corresponding patients showed a low prevalence of urinary metabolic abnormalities. With increasing COD/COM ratio intervals (0–0.25, 0.26–0.50, 0.51–0.75, 0.76–1), a significant association was observed for the number of urological procedures, serum calcium, 24-h urinary calcium excretion, prevalence of hypercalciuria and relative calcium oxalate supersaturation, and a negative trend was detected for the age of the first stone episode (all p values < 0.05). A linear regression model showed that the only parameters significantly associated with COD/COM ratio were 24-h urinary calcium excretion (standardized β = 0.464, p < 0.001) and urine pH (standardized β = 0.103, p = 0.013). In pure calcium oxalate idiopathic stones, COD/COM ratio may reflect the presence of urinary metabolic risk factors, and represent a guide for the prescription of urinary analyses.


Urolithiasis Hypercalciuria Hyperoxaluria Kidney stones Calcium oxalate 



The authors wish to thank Antonio Nouvenne, for important assistance in study design and manuscript drafting, Maurizio Rossi, for the precious statistical consult, and Michele Zenna, for assistance in database management and support in manuscript drafting.

Compliance with ethical standards

Conflict of interest

The authors have nothing to disclose.

Ethical standards

The study protocol was approved by the local Ethics Committee as part of a larger project on the clinical and nutritional correlates of urinary parameters in nephrolithiasis. The study was carried out according to the principles of the Declaration of Helsinki. Informed consent was obtained according to Italian law for retrospective studies.

Informed consent

Informed consent was obtained according to Italian law for retrospective studies.


  1. 1.
    Romero V, Akpinar H, Assimos DG (2010) Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol 12(2–3):e86–e96Google Scholar
  2. 2.
    Daudon M, Réveillaud RJ (1984) Whewellite and weddellite: toward a different etiopathogenesis. Nephrologie 5(5):195–201Google Scholar
  3. 3.
    Daudon M, Bader CA, Jungers P (1993) Urinary calculi: review of classification methods and correlations with etiology. Scan Microsc 7(3):1081–1106Google Scholar
  4. 4.
    Jiang D, Geng H (2017) Primary hyperoxaluria. N Engl J Med 376(15):e33CrossRefGoogle Scholar
  5. 5.
    Daudon M, Jungers P, Bazin D (2008) Peculiar morphology of stones in primary hyperoxaluria. N Engl J Med 359(1):100–102CrossRefGoogle Scholar
  6. 6.
    Sutton RA, Walker VR (1994) Enteric and mild hyperoxaluria. Miner Electrolyte Metab 20(6):352–360Google Scholar
  7. 7.
    Massey LK, Liebman M, Kynast-Gales SA (2005) Ascorbate increases human oxaluria and kidney stone risk. J Nutr 135(7):1673–1677CrossRefGoogle Scholar
  8. 8.
    Albert A, Tiwari V, Paul E, Ponnusamy S, Ganesan D, Prabhakaran R et al (2018) Oral administration of oxalate-enriched spinach extract as an improved methodology for the induction of dietary hyperoxaluric nephrocalcinosis in experimental rats. Toxicol Mech Methods 28(3):195–204CrossRefGoogle Scholar
  9. 9.
    Daudon M, Bazin D, André G, Jungers P, Cousson A, Chevallier P et al (2009) Examination of whewellite kidney stones by scanning electron microscopy and powder neutron diffraction techniques. J Appl Cryst 42:109–115CrossRefGoogle Scholar
  10. 10.
    Park S, Pearle MS (2007) Pathophysiology and management of calcium stones. Urol Clin N Am 34(3):323–334CrossRefGoogle Scholar
  11. 11.
    Prezioso D, Strazzullo D, Lotti T, Bianchi G, Borghi L, Caione P et al (2015) Dietary treatment of urinary risk factors for renal stone formation. A review of CLU Working Group. Arch Ital Urol Androl 87(2):105–120CrossRefGoogle Scholar
  12. 12.
    Gambaro G, Croppi E, Coe F, Lingeman J, Moe O, Worcester E et al (2016) Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: a consensus statement. J Nephrol 29(6):715–734CrossRefGoogle Scholar
  13. 13.
    Nouvenne A, Ticinesi A, Allegri F, Guerra A, Guida L, Morelli I et al (2014) Twenty-five years of idiopathic calcium nephrolithiasis: has anything changed? Clin Chem Lab Med 52(3):337–344CrossRefGoogle Scholar
  14. 14.
    Guerra A, Folesani G, Nouvenne A, Ticinesi A, Allegri F, Pinelli S et al (2016) Family history influences clinical course of idiopathic calcium nephrolithiasis: case–control study of a large cohort of Italian patients. J Nephrol 29(5):645–651CrossRefGoogle Scholar
  15. 15.
    Ticinesi A, Guerra A, Allegri F, Nouvenne A, Cervellin G, Maggio M et al (2018) Determinants of calcium and oxalate excretion in subjects with calcium nephrolithiasis: the role of metabolic syndrome traits. J Nephrol 31(3):395–403CrossRefGoogle Scholar
  16. 16.
    Ferraro PM, Ticinesi A, Meschi T, Rodgers A, Di Maio F, Fulignati P et al (2018) Short-term changes in urinary supersaturation predict recurrence of kidney stones: a tool to guide preventive measures in urolithiasis. J Urol 200(5):1082–1087CrossRefGoogle Scholar
  17. 17.
    Werness P, Brown CM, Smith LH, Finlayson B (1985) Equil2: a basic computer program for the calculation of urinary saturation. J Urol 134:1242–1244CrossRefGoogle Scholar
  18. 18.
    Maurice-Estepa L, Levillain P, Lacour B, Daudon M (2000) Advantage of zero-crossing-point first-derivative spectrophotometry for the quantification of calcium oxalate crystalline phases by infrared spectrophotometry. Clin Chim Acta 298(1–2):1–11CrossRefGoogle Scholar
  19. 19.
    Castiglione V, Jouret F, Bruyère O, Dubois B, Thomas A, Waltregny D et al (2015) Epidemiology of urolithiasis in Belgium on the basis of a morpho-constitutional classification. Nephrol Ther 11(1):42–49CrossRefGoogle Scholar
  20. 20.
    Daudon M, Traxer O, Lechevallier E, Saussine C (2008) Epidemiology of urolithiasis. Prog Urol 18(12):802–814CrossRefGoogle Scholar
  21. 21.
    Pierratos AE, Khalaff H, Cheng PT, Psihramis K, Jewett MA (1994) Clinical and biochemical differences in patients with pure calcium oxalate monohydrate and calcium oxalate dehydrate kidney stones. J Urol 151(3):571–574CrossRefGoogle Scholar
  22. 22.
    Parent X, Boess G, Brignon P (1999) Calcium oxalate lithiasis. Relationship between biochemical risk factors and crystalline phase of the stone. Prog Urol 9(6):1051–1056Google Scholar
  23. 23.
    Asplin JR, Lingeman J, Kahnoski R, Mardis H, Parks JH, Coe FL (1998) Metabolic urinary correlates of calcium oxalate dehydrate in renal stones. J Urol 159(3):664–668CrossRefGoogle Scholar
  24. 24.
    Daudon M, Letavernier E, Frochot V, Haymann JP, Bazin D, Jungers P (2016) Respective influence of calcium and oxalate urine concentration on the formation of calcium oxalate kidney monohydrate or dehydrate crystals. C R Chim 19:1504–1513CrossRefGoogle Scholar
  25. 25.
    Manissorn J, Fong-Ngern K, Peerapen P, Thongboonkerd V (2017) Systematic evaluation for effects of urine pH on calcium oxalate crystallization, crystal-cell adhesion and internalization into renal tubular cells. Sci Rep 7(1):1798CrossRefGoogle Scholar
  26. 26.
    Parks JH, Coward M, Coe FL (1997) Correspondence between stone composition and urine supersaturation in nephrolithiasis. Kidney Int 51(3):894–900CrossRefGoogle Scholar
  27. 27.
    Singh P, Enders FT, Vaughan LE, Bergstralh EJ, Knoedler JJ, Krambeck AE et al (2015) Stone composition among first-time symptomatic kidney stone formers in the community. Mayo Clin Proc 90(10):1356–1365CrossRefGoogle Scholar
  28. 28.
    Vaughan LE, Enders FT, Lieske JC, Pais VM, Rivera ME, Mehta RA et al (2019) Predictors of symptomatic kidney stone recurrence after the first and subsequent episodes. Mayo Clin Proc 94(2):202–210CrossRefGoogle Scholar
  29. 29.
    Ticinesi A, Nouvenne A, Borghi L, Meschi T (2017) Water and other fluids in nephrolithiasis: state of the art and future challenges. Crit Rev Food Sci Nutr 57(5):963–974CrossRefGoogle Scholar
  30. 30.
    Ticinesi A, Nouvenne A, Maalouf NM, Borghi L, Meschi T (2016) Salt and nephrolithiasis. Nephrol Dial Transplant 31(1):39–45CrossRefGoogle Scholar
  31. 31.
    Guerra A, Ticinesi A, Allegri F, Nouvenne A, Prati B, Pinelli S et al (2019) Insights about urinary hippuric and citric acid as biomarkers of fruit and vegetable intake in patients with kidney stones: the role of age and gender. Nutrition 59:83–89CrossRefGoogle Scholar
  32. 32.
    Meschi T, Nouvenne A, Ticinesi A, Prati B, Guerra A, Allegri F et al (2012) Dietary habits in women with recurrent idiopathic calcium nephrolithiasis. J Transl Med 10:63CrossRefGoogle Scholar
  33. 33.
    Ticinesi A, Milani C, Guerra A, Allegri F, Lauretani F, Nouvenne A et al (2018) Understanding the gut-kidney axis in nephrolithiasis: an analysis of the gut microbiota composition and functionality of stone formers. Gut 67(12):2097–2106CrossRefGoogle Scholar
  34. 34.
    Guerra A, Ticinesi A, Allegri F, Nouvenne A, Pinelli S, Folesani G et al (2016) The influence of maternal and paternal history on stone composition and clinical course of calcium nephrolithiasis in subjects aged between 15 and 25. Urolithiasis 44(6):521–528CrossRefGoogle Scholar
  35. 35.
    Guerra A, Ticinesi A, Allegri F, Nouvenne A, Pinelli S, Lauretani F et al (2017) Calcium urolithiasis course in young stone formers is influenced by the strength of family history: results from a retrospective study. Urolithiasis 45(6):525–533CrossRefGoogle Scholar
  36. 36.
    Jaggi M, Nakagawa Y, Zipperle L, Hess B (2007) Tamm-Horsfall protein in recurrent calcium kidney stone formers with positive family history: abnormalities in urinary excretion, molecular structure and function. Urol Res 35(2):55–62CrossRefGoogle Scholar
  37. 37.
    Yamate T, Tsuji H, Amasaki N, Iguchi M, Kurita T, Kohri K (2000) Analysis of osteopontin DNA in patients with urolithiasis. Urol Res 28(3):159–166CrossRefGoogle Scholar
  38. 38.
    Rimel JD, Kolbach-Mandel AM, Ward MD, Wesson JA (2017) The role of macromolecules in the formation of kidney stones. Urolithiasis 45(1):47–54Google Scholar
  39. 39.
    Wollin DA, Kaplan AG, Preminger GM, Ferraro PM, Nouvenne A, Tasca A et al (2018) Defining metabolic activity of nephrolithiasis—appropriate evaluation and follow-up of stone formers. Asian J Urol 5(4):235–242CrossRefGoogle Scholar
  40. 40.
    Daudon M, Jungers P, Bazin D, Williams JC Jr. (2018) Recurrence rates of urinary calculi according to stone composition and morphology. Urolithiasis 46(5):459–470CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Geriatric-Rehabilitation DepartmentParma University-Hospital (Azienda Ospedaliero-Universitaria di Parma)ParmaItaly
  2. 2.Department of Medicine and SurgeryUniversity of ParmaParmaItaly
  3. 3.Diagnostic Department, U.O. Diagnostica Ematochimica e S.S.D. Biochimica ad Elevata AutomazioneUniversity-Hospital of ParmaParmaItaly

Personalised recommendations