Advertisement

1H NMR-based metabolomic study of metabolic profiling for the urine of kidney stone patients

  • Xiaolu Duan
  • Tao Zhang
  • Lili Ou
  • Zhenzhen Kong
  • Wenqi Wu
  • Guohua ZengEmail author
Original Paper
  • 33 Downloads

Abstract

Kidney stone is a chronic metabolic disease that caused by many factors, especially by the metabolic disturbances of urine compositions, but the metabolic profiling of the urine from kidney stone patients remains poorly explored. In the present study, 1H NMR spectroscopy and multivariate pattern recognition analytical techniques were combined to explore the metabolic profiling of the urine from kidney stone patients. A total of 216 urine samples obtained from kidney stone patients (n = 110) and healthy controls (n = 106) were investigated. The results indicated that principal component analysis (PCA) and partial least-squares discriminant analysis (PLS-DA) models were capable of distinguishing kidney stone patients from healthy controls. In addition, a total of 15 metabolites was obviously different in concentration between the two groups. Furthermore, four metabolic pathways, including glyoxylate and dicarboxylate metabolism, glycine, serine and threonine metabolism, phenylalanine metabolism and citrate cycle (TCA cycle), were closely associated with kidney stone. Together, our results established a preliminary metabolic profiling of the urine from kidney stone patients via using 1H NMR-based analytical techniques for the first time and provided a novel method for recognizing and observing the kidney stone disease.

Keywords

Kidney stone Metabolomics Urine NMR Pattern recognition 

Notes

Funding

This study was financed by Grants from the Guangzhou Science Technology and Innovation Commission (No. 201704020193, No. 201607010162 and No. 201604020001), the National Natural Science Foundation of China (No. 81670643, No. 81601273 and No. 81870483), the Collaborative Innovation Project of Guangzhou Education Bureau (No. 1201620011) and the Science and Technology Planning Project of Guangdong Province (No. 2017B030314108).

Compliance with ethical standards

Conflict of interest

All authors declare no conflict of interest.

Ethical approval

All procedures performed in the present study involving human participants were in accordance with the ethical standards of the Ethics Committee of the First Affiliated Hospital of Guangzhou Medical University and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Supplementary material

240_2019_1132_MOESM1_ESM.docx (295 kb)
Supplementary material 1 (DOCX 294 kb)
240_2019_1132_MOESM2_ESM.docx (81 kb)
Supplementary material 2 (DOCX 81 kb)

References

  1. 1.
    Romero V, Akpinar H, Assimos DG (2010) Kidney stones: a global picture of prevalence, incidence, and associated risk factors. Rev Urol 12:e86–e96Google Scholar
  2. 2.
    Stamatelou KK, Francis ME, Jones CA, Nyberg LM, Curhan GC (2003) Time trends in reported prevalence of kidney stones in the United States: 1976–1994. Kidney Int 63:1817–1823CrossRefGoogle Scholar
  3. 3.
    Goldfarb DS (2009) In the clinic Nephrolithiasis. Ann Intern Med 151:ITC2.2–ITC2.16Google Scholar
  4. 4.
    Skolarikos A, Straub M, Knoll T, Sarica K, Seitz C, Petřík A, Türk C (2015) Metabolic evaluation and recurrence prevention for urinary stone patients: EAU guidelines. Eur Urol 67:750–763CrossRefGoogle Scholar
  5. 5.
    Duan X, Kong Z, Mai X, Lan Y, Liu Y, Yang Z, Zhao Z, Deng T, Zeng T, Cai C, Li S, Zhong W, Wu W, Zeng G (2018) Autophagy inhibition attenuates hyperoxaluria-induced renal tubular oxidative injury and calcium oxalate crystal depositions in the rat kidney. Redox Biol 16:414–425CrossRefGoogle Scholar
  6. 6.
    Boonla C, Tosukhowong P, Spittau B, Schlosser A, Pimratana C, Krieglstein K (2014) Inflammatory and fibrotic proteins proteomically identified as key protein constituents in urine and stone matrix of patients with kidney calculi. Clin Chim Acta 429:81–89CrossRefGoogle Scholar
  7. 7.
    Kovacevic L, Lu H, Goldfarb DS, Lakshmanan Y, Caruso JA (2015) Urine proteomic analysis in cystinuric children with renal stones. J Pediatr Urol 11:217.e1–217.e6CrossRefGoogle Scholar
  8. 8.
    Okumura N, Tsujihata M, Momohara C, Yoshioka I, Suto K, Nonomura N, Okuyama A, Takao T (2013) Diversity in protein profiles of individual calcium oxalate kidney stones. PLoS One 8:e68624CrossRefGoogle Scholar
  9. 9.
    Faerk J, Peitersen B, Petersen S, Michaelsen KF (2002) Bone mineralisation in premature infants cannot be predicted from serum alkaline phosphatase or serum phosphate. Arch Dis Child Fetal Neonatal Ed 87:F133–F136CrossRefGoogle Scholar
  10. 10.
    Wang M, Yang X, Ren L, Li S, He X, Wu X, Liu T, Lin L, Li Y, Sun C (2014) Biomarkers identified by urinary metabonomics for noninvasive diagnosis of nutritional rickets. J Proteome Res 13:4131–4142CrossRefGoogle Scholar
  11. 11.
    Ouyang X, Dai Y, Wen JL, Wang LX (2013) 1H NMR-based metabolomic study of metabolic profiling for systemic lupus erythematosus. Lupus 20:1411–1420CrossRefGoogle Scholar
  12. 12.
    Maher AD, Crockford D, Toft H, Malmodin D, Faber JH, McCarthy MI, Barrett A, Allen M, Walker M, Holmes E, Lindon JC, Nicholson JK (2008) Optimization of human plasma 1H NMR spectroscopic data processing for high-throughput metabolic phenotyping studies and detection of insulin resistance related to type 2 diabetes. Anal Chem 80:7354–7362CrossRefGoogle Scholar
  13. 13.
    Sinclair AJ, Viant MR, Ball AK, Burdon MA, Walker EA, Stewart PM, Rauz S, Young SP (2010) NMR based metabolomic analysis of cerebrospinal fluid and serum in neurological diseases–a diagnostic tool? NMR Biomed 23:123–132Google Scholar
  14. 14.
    Kang SM, Park JC, Shin MJ, Lee H, Oh J, Ryu DH, Hwang GS, Chung JH (2011) 1H nuclear magnetic resonance based metabolic urinary profiling of patients with ischemic heart failure. Clin Biochem 44:293–299CrossRefGoogle Scholar
  15. 15.
    Chan AW, Mercier P, Schiller D, Bailey R, Robbins S, Eurich DT, Sawyer MB, Broadhurst D (2016) 1H-NMR urinary metabolomic profiling for diagnosis of gastric cancer. Br J Cancer 14:59–62CrossRefGoogle Scholar
  16. 16.
    Lamego I, Duarte IF, Marques MP, Gil AM (2014) Metabolic markers of MG-63 osteosarcoma cell line response to doxorubicin and methotrexate treatment: comparison to cisplatin. J Proteome Res 13:6033–6045CrossRefGoogle Scholar
  17. 17.
    Eisner R, Stretch C, Eastman T, Xia J, Hau D, Damaraju S, Greiner R, Wishart DS, Baracos V (2011) Learning to predict cancer-associated skeletal muscle wasting from H-NMR profiles of urinary metabolomics. Metabolomics 7:25–34CrossRefGoogle Scholar
  18. 18.
    Slupsky CM, Rankin KN, Wagner J, Fu H, Chang D, Weljie AM, Saude EJ, Lix B, Adamko DJ, Shah S, Greiner R, Sykes BD, Marrie TJ (2007) Investigations of the effects of gender, diurnal variation, and age in human urinary metabolomic profiles. Anal Chem 79:6995–7004CrossRefGoogle Scholar
  19. 19.
    Davis VW, Schiller DE, Eurich D, Bathe OF, Sawyer MB (2013) Pancreatic ductal adenocarcinoma is associated with a distinct urinary metabolomic signature. Ann Surg Oncol 20(Suppl 3):S415–S423CrossRefGoogle Scholar
  20. 20.
    Ji J, Zhang L, Zhang H, Sun C, Sun J, Jiang H, Abdalhai MH, Zhang Y, Sun X (2016) 1H NMR-based urine metabolomics for the evaluation of kidney injury in Wistar rats by 3-MCPD. Toxicol Res (Camb) 5(2):689–696CrossRefGoogle Scholar
  21. 21.
    Dona AC, Kyriakides M, Scott F, Shephard EA, Varshavi D, Veselkov K, Everett JR (2016) A guide to the identification of metabolites in NMR-based metabonomics/metabolomics experiments. Comput Struct Biotechnol J 14:135–153CrossRefGoogle Scholar
  22. 22.
    Weljie AM, Newton J, Mercier P, Carlson E, Slupsky CM (2006) Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Anal Chem 78:4430–4442CrossRefGoogle Scholar
  23. 23.
    Stacklies W, Redestig H, Scholz M, Walther D, Selbig J (2007) pcaMethods—a bioconductor package providing PCA methods for incomplete data. Bioinformatics 23:1164–1167CrossRefGoogle Scholar
  24. 24.
    Mevik BH, Wehrens R (2007) The plsPackage: principal component and partial least squares regression in R. J Stat Softw 18:1–24CrossRefGoogle Scholar
  25. 25.
    Zhou A, Ni J, Xu Z, Wang Y, Lu S, Sha W, Karakousis PC, Yao YF (2013) Application of 1H-NMR spectroscopy-based metabolomics to sera of tuberculosis patients. J Proteome Res 12(10):4642–4649CrossRefGoogle Scholar
  26. 26.
    Zhang JD, Wiemann S (2009) KEGGgraph: a graph approach to KEGG PATHWAY in R and bioconductor. Bioinformatics 25:1470–1471CrossRefGoogle Scholar
  27. 27.
    Ennis JL, Asplin JR (2016) The role of the 24-h urine collection in the management of nephrolithiasis. Int J Surg 36(Pt D):633–637CrossRefGoogle Scholar
  28. 28.
    Khan SR, Pearle MS, Robertson WG, Gambaro G, Canales BK, Doizi S, Traxer O, Tiselius HG (2016) Kidney stones. Nat Rev Dis Primers 2:16008CrossRefGoogle Scholar
  29. 29.
    Morgan MSC, Pearle MS (2016) Medical management of renal stones. BMJ 352:i52CrossRefGoogle Scholar
  30. 30.
    Bihl G, Meyers A (2001) Recurrent renal stone disease-advances in pathogenesis and clinical management. Lancet 358(9282):651–656CrossRefGoogle Scholar
  31. 31.
    Niu QY, Li ZY, Du GH, Qin XM (2016) 1H NMR based metabolomic profiling revealed doxorubicin-induced systematic alterations in a rat model. J Pharm Biomed Anal 118:338–348CrossRefGoogle Scholar
  32. 32.
    Jiang J, Knight J, Easter LH, Neiberg R, Holmes RP, Assimos DG (2011) Impact of dietary calcium and oxalate, and Oxalobacter formigenes colonization on urinary oxalate excretion. J Urol 186:135–139CrossRefGoogle Scholar
  33. 33.
    Kaufman DW, Kelly JP, Curhan GC, Anderson TE, Dretler SP, Preminger GM, Cave DR (2008) Oxalobacter formigenes may reduce the risk of calcium oxalate kidney stones. J Am Soc Nephrol 19:1197–1203CrossRefGoogle Scholar
  34. 34.
    Siener R, Bangen U, Sidhu H, Hönow R, von Unruh G, Hesse A (2013) The role of Oxalobacter formigenes colonization in calcium oxalate stone disease. Kidney Int 83:1144–1149CrossRefGoogle Scholar
  35. 35.
    Manfredini R, De Giorgi A, Storari A, Fabbian F (2016) Pears and renal stones: possible weapon for prevention? A comprehensive narrative review. Eur Rev Med Pharmacol 20:414–425Google Scholar
  36. 36.
    Mills EL, Kelly B, O’Neill LAJ (2017) Mitochondria are the powerhouses of immunity. Nat Immunol 18(5):488–498CrossRefGoogle Scholar
  37. 37.
    Cao Y, Sagi S, Häcker A, Steidler A, Alken P, Knoll T (2006) Impact of hypoxia and hypercapnia on calcium oxalate toxicity in renal epithelial and interstitial cells. Urol Res 34:271–276CrossRefGoogle Scholar
  38. 38.
    Sun YJ, Wang HP, Liang YJ, Yang L, Li W, Wu YJ (2012) An NMR-based metabonomic investigation of the subacute effects of melamine in rats. J Proteome Res 11:2544–2550CrossRefGoogle Scholar
  39. 39.
    Won EY, Yoon MK, Kim SW, Jung Y, Bae HW, Lee D, Park SG, Lee CH, Hwang GS, Chi SW (2013) Gender-specific metabolomic profiling of obesity in leptin-deficient ob/ob mice by 1H NMR spectroscopy. PLoS One 8:e75998CrossRefGoogle Scholar
  40. 40.
    Nicholson JK, Connelly J, Lindon JC, Holmes E (2002) Metabonomics: a platform for studying drug toxicity and gene function. Nat Rev Drug Discov 1:153–161CrossRefGoogle Scholar
  41. 41.
    Meimaridou E, Lobos E, Hothersall JS (2006) Renal oxidative vulnerability due to changes in mitochondrial-glutathione and energy homeostasis in a rat model of calcium oxalate urolithiasis. Am J Physiol Renal Physiol 291:F731–F740CrossRefGoogle Scholar
  42. 42.
    Atanassova SS, Panchev P, Ivanova M (2010) Plasma levels and urinary excretion of amino acids by subjects with renal calculi. Amino Acids 38:1277–1282CrossRefGoogle Scholar
  43. 43.
    Zinsser HH, Stem F, Marshall S, Karp F, Seneca E, Gursel E (1971) Urinary organic acids found in B6 deficient rats and calcium oxalate calculus patients. Br J Urol 43:523–535CrossRefGoogle Scholar
  44. 44.
    Heijkenskjold F, Molierberg H (1956) The presence of amino acids in urinary calculi. Scand J Clin Lab Invest 8:230–233CrossRefGoogle Scholar
  45. 45.
    Khan SR (2012) Is oxidative stress, a link between nephrolithiasis and obesity, hypertension, diabetes, chronic kidney disease, metabolic syndrome? Urol Res 40:95–112CrossRefGoogle Scholar
  46. 46.
    Khan SR (2013) Reactive oxygen species as the molecular modulators of calcium oxalate kidney stone formation: evidence from clinical and experimental investigations. J Urol 189:803–811CrossRefGoogle Scholar
  47. 47.
    Muteliefu G, Enomoto A, Jiang P, Takahashi M, Niwa T (2009) Indoxyl sulphate induces oxidative stress and the expression of osteoblast-specific proteins in vascular smooth muscle cells. Nephrol Dial Transplan 24:2051–2058CrossRefGoogle Scholar
  48. 48.
    Okada A, Nomura S, Higashibata Y, Hirose M, Gao B, Yoshimura M, Itoh Y, Yasui T, Tozawa K, Kohri K (2007) Successful formation of calcium oxalate crystal deposition in mouse kidney by intraabdominal glyoxylate injection. Urol Res 35:89–99CrossRefGoogle Scholar
  49. 49.
    Guo C, Cenac TA, Li Y, McMartin KE (2007) Calcium oxalate, and not other metabolites, is responsible for the renal toxicity of ethylene glycol. Toxicol Lett 173:8–16CrossRefGoogle Scholar
  50. 50.
    Poldelski V, Johnson A, Wright S, Rosa VD, Zager RA (2001) Ethylene glycolmediated tubular injury: identification of critical metabolites and injury pathways. Am J Kidney Dis 38:339–348CrossRefGoogle Scholar
  51. 51.
    Thamilselvan V, Menon M, Thamilselvan S (2014) Oxalate at physiological urine concentrations induces oxidative injury in renal epithelial cells: effect of α-tocopherol and ascorbic acid. BJU Int 114:140–150CrossRefGoogle Scholar
  52. 52.
    Lange JN, Wood KD, Knight J, Assimos DG, Holmes RP (2012) Glyoxal formation and its role in endogenous oxalate synthesis. Adv Urol.  https://doi.org/10.1155/2012/819202 Google Scholar
  53. 53.
    Aggarwal KP, Tandon S, Naik PK, Singh SK, Tandon C (2013) Peeping into human renal calcium oxalate stone matrix: characterization of novel proteins involved in the intricate mechanism of urolithiasis. PLoS One 8:e69916CrossRefGoogle Scholar
  54. 54.
    Kelsey R (2016) Stones: gut microbiome is unique in kidney stone disease. Nat Rev Urol 13(7):368CrossRefGoogle Scholar
  55. 55.
    Stern JM, Moazami S, Qiu Y, Kurland I, Chen Z, Agalliu I, Burk R, Davies KP (2016) Evidence for a distinct gut microbiome in kidney stone formers compared to non-stone formers. Urolithiasis 44(5):399–407CrossRefGoogle Scholar
  56. 56.
    Ticinesi A, Milani C, Guerra A, Allegri F, Lauretani F, Nouvenne A, Mancabelli L, Lugli GA, Turroni F, Duranti S, Mangifesta M, Viappiani A, Ferrario C, Dodi R, Dall’Asta M, Del Rio D, Ventura M, Meschi T (2018) Understanding the gut-kidney axis in nephrolithiasis: an analysis of the gut microbiota composition and functionality of stone formers. Gut  67(12):2097–2106CrossRefGoogle Scholar
  57. 57.
    Niu QY, Li ZY, Du GH, Qin XM (2016) 1H NMR based metabolomic profiling revealed doxorubicin-induced systematic alterations in a rat model. J Pharm Biomed Anal 118:338–348CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Xiaolu Duan
    • 1
    • 2
  • Tao Zhang
    • 1
    • 2
  • Lili Ou
    • 1
    • 2
  • Zhenzhen Kong
    • 1
    • 2
  • Wenqi Wu
    • 1
    • 2
  • Guohua Zeng
    • 1
    • 2
    Email author
  1. 1.Department of Urology, Minimally Invasive Surgery CenterThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
  2. 2.Guangdong Key Laboratory of UrologyGuangzhou Institute of UrologyGuangzhouChina

Personalised recommendations