Advertisement

Urolithiasis

, Volume 47, Issue 2, pp 181–188 | Cite as

In vitro feasibility of next generation non-linear beamforming ultrasound methods to characterize and size kidney stones

  • Jaime E. Tierney
  • Siegfried G. Schlunk
  • Rebecca Jones
  • Mark George
  • Pranav Karve
  • Ravindra Duddu
  • Brett C. Byram
  • Ryan S. HsiEmail author
Original Paper

Abstract

Ultrasound imaging for kidney stones suffers from poorer sensitivity, diminished specificity, and overestimation of stone size compared to computed tomography (CT). The purpose of this study was to demonstrate in vitro feasibility of novel ultrasound imaging methods comparing traditional B-mode to advanced beamforming techniques including plane wave synthetic focusing (PWSF), short-lag spatial coherence (SLSC) imaging, mid-lag spatial coherence (MLSC) imaging with incoherent compounding, and aperture domain model image reconstruction (ADMIRE). The ultrasound techniques were evaluated using a research-based ultrasound system applied to an in vitro kidney stone model at 4 and 8 cm depths. Stone diameter sizing and stone contrast were compared among the different techniques. Analysis of variance was used to analyze the differences among group means, with p < 0.05 considered significant, and a Student’s t test was used to compare each method with B-mode, with p < 0.0025 considered significant. All stones were detectable with each method. MLSC performed best with stone sizing and stone contrast compared to B-mode. On average, B-mode sizing error ± SD was > 1 mm (1.2 ± 1.1 mm), while those for PWSF, ADMIRE, and MLSC were < 1 mm (− 0.3 ± 2.9 mm, 0.6 ± 0.8, 0.8 ± 0.8, respectively). Subjectively, MLSC appeared to suppress the entire background thus highlighting only the stone. The ADMIRE and SLSC techniques appeared to highlight the stone shadow relative to the background. The detection and sizing of stones in vitro are feasible with advanced beamforming methods with ultrasound. Future work will include imaging stones at greater depths and evaluating the performance of these methods in human stone formers.

Keywords

Ultrasonography Kidney Kidney calculi 

Notes

Funding

This study was funded by the Vanderbilt Institute of Surgery and Engineering (VISE) Pilot and Feasibility Award, VISE Surgeon in Residence Award, and R01EB020040.

Compliance with ethical standards

Conflict of interest

The authors report no competing conflict of interest disclosures.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

References

  1. 1.
    Scales CD Jr, Smith AC, Hanley JM, Saigal CS, Urologic Diseases in America P (2012) Prevalence of kidney stones in the United States. Eur Urol 62(1):160–165.  https://doi.org/10.1016/j.eururo.2012.03.052 CrossRefGoogle Scholar
  2. 2.
    Bryant M, Angell J, Tu H, Goodman M, Pattaras J, Ogan K (2012) Health related quality of life for stone formers. J Urol 188(2):436–440.  https://doi.org/10.1016/j.juro.2012.04.015 CrossRefGoogle Scholar
  3. 3.
    Pearle MS, Calhoun EA, Curhan GC, Urologic Diseases of America P (2005) Urologic diseases in America project: urolithiasis. J Urol 173(3):848–857.  https://doi.org/10.1097/01.ju.0000152082.14384.d7 CrossRefGoogle Scholar
  4. 4.
    Smith RC, Varanelli M (2000) Diagnosis and management of acute ureterolithiasis: CT is truth. AJR 175(1):3–6CrossRefGoogle Scholar
  5. 5.
    Smith RC, Verga M, McCarthy S, Rosenfield AT (1996) Diagnosis of acute flank pain: value of unenhanced helical CT. AJR 166(1):97–101CrossRefGoogle Scholar
  6. 6.
    Brenner DJ, Hall EJ (2007) Computed tomography—an increasing source of radiation exposure. N Engl J Med 357(22):2277–2284.  https://doi.org/10.1056/NEJMra072149 CrossRefGoogle Scholar
  7. 7.
    Ferrandino MN, Bagrodia A, Pierre SA, Scales CD Jr, Rampersaud E, Pearle MS, Preminger GM (2009) Radiation exposure in the acute and short-term management of urolithiasis at 2 academic centers. J Urol 181(2):668–672.  https://doi.org/10.1016/j.juro.2008.10.012 (discussion 673) CrossRefGoogle Scholar
  8. 8.
    Tasian GE, Ross ME, Song L, Sas DJ, Keren R, Denburg MR, Chu DI, Copelovitch L, Saigal CS, Furth SL (2016) Annual incidence of nephrolithiasis among children and adults in South Carolina from 1997 to 2012. Clin J Am Soc Nephrol 11(3):488–496.  https://doi.org/10.2215/CJN.07610715 CrossRefGoogle Scholar
  9. 9.
    Ulusan S, Koc Z, Tokmak N (2007) Accuracy of sonography for detecting renal stone: comparison with CT. J Clin Ultrasound JCU 35(5):256–261.  https://doi.org/10.1002/jcu.20347 CrossRefGoogle Scholar
  10. 10.
    Unal D, Yeni E, Karaoglanoglu M, Verit A, Karatas OF (2003) Can conventional examinations contribute to the diagnostic power of unenhanced helical computed tomography in urolithiasis? Urol Int 70(1):31–35.  https://doi.org/10.1159/000067702 CrossRefGoogle Scholar
  11. 11.
    Ray AA, Ghiculete D, Pace KT, Honey RJ (2010) Limitations to ultrasound in the detection and measurement of urinary tract calculi. Urology 76(2):295–300.  https://doi.org/10.1016/j.urology.2009.12.015 CrossRefGoogle Scholar
  12. 12.
    Fowler KA, Locken JA, Duchesne JH, Williamson MR (2002) US for detecting renal calculi with nonenhanced CT as a reference standard. Radiology 222(1):109–113CrossRefGoogle Scholar
  13. 13.
    Dunmire B, Lee FC, Hsi RS, Cunitz BW, Paun M, Bailey MR, Sorensen MD, Harper JD (2015) Tools to improve the accuracy of kidney stone sizing with ultrasound. J Endourol 29(2):147–152.  https://doi.org/10.1089/end.2014.0332 CrossRefGoogle Scholar
  14. 14.
    Sternberg KM, Eisner B, Larson T, Hernandez N, Han J, Pais VM (2016) Ultrasonography significantly overestimates stone size when compared to low-dose, noncontrast computed tomography. Urology 95:67–71.  https://doi.org/10.1016/j.urology.2016.06.002 CrossRefGoogle Scholar
  15. 15.
    Ganesan V, De S, Greene D, Torricelli FC, Monga M (2017) Accuracy of ultrasonography for renal stone detection and size determination: is it good enough for management decisions? BJU Int 119(3):464–469.  https://doi.org/10.1111/bju.13605 CrossRefGoogle Scholar
  16. 16.
    Metzler IS, Smith-Bindman R, Moghadassi M, Wang RC, Stoller ML, Chi T (2017) Emergency department imaging modality effect on surgical management of nephrolithiasis: a multicenter, randomized clinical trial. J Urol 197(3 Pt 1):710–714.  https://doi.org/10.1016/j.juro.2016.09.122 CrossRefGoogle Scholar
  17. 17.
    Shabana W, Bude RO, Rubin JM (2009) Comparison between color Doppler twinkling artifact and acoustic shadowing for renal calculus detection: an in vitro study. Ultrasound Med Biol 35(2):339–350.  https://doi.org/10.1016/j.ultrasmedbio.2008.09.023 CrossRefGoogle Scholar
  18. 18.
    Abdel-Gawad M, Kadasne RD, Elsobky E, Ali-El-Dein B, Monga M (2016) A prospective comparative study of color Doppler ultrasound with twinkling and noncontrast computerized tomography for the evaluation of acute renal colic. J Urol 196(3):757–762.  https://doi.org/10.1016/j.juro.2016.03.175 CrossRefGoogle Scholar
  19. 19.
    May PC, Haider Y, Dunmire B, Cunitz BW, Thiel J, Liu Z, Bruce M, Bailey MR, Sorensen MD, Harper JD (2016) Stone-mode ultrasound for determining renal stone size. J Endourol 30(9):958–962.  https://doi.org/10.1089/end.2016.0341 CrossRefGoogle Scholar
  20. 20.
    Lee JY, Kim SH, Cho JY, Han D (2001) Color and power Doppler twinkling artifacts from urinary stones: clinical observations and phantom studies. AJR 176(6):1441–1445.  https://doi.org/10.2214/ajr.176.6.1761441 CrossRefGoogle Scholar
  21. 21.
    Lediju MA, Trahey GE, Byram BC, Dahl JJ (2011) Short-lag spatial coherence of backscattered echoes: imaging characteristics. IEEE Trans Ultrason Ferroelectr Freq Control 58(7):1377–1388.  https://doi.org/10.1109/TUFFC.2011.1957 CrossRefGoogle Scholar
  22. 22.
    Bottenus N, Byram BC, Dahl JJ, Trahey GE (2013) Synthetic aperture focusing for short-lag spatial coherence imaging. IEEE Trans Ultrason Ferroelectr Freq Control 60(9):1816–1826.  https://doi.org/10.1109/TUFFC.2013.2768 CrossRefGoogle Scholar
  23. 23.
    Byram B, Dei K, Tierney J, Dumont D (2015) A model and regularization scheme for ultrasonic beamforming clutter reduction. IEEE Trans Ultrason Ferroelectr Freq Control 62(11):1913–1927.  https://doi.org/10.1109/TUFFC.2015.007004 CrossRefGoogle Scholar
  24. 24.
    Byram B, Jakovljevic M (2014) Ultrasonic multipath and beamforming clutter reduction: a chirp model approach. IEEE Trans Ultrason Ferroelectr Freq Control 61(3):428–440.  https://doi.org/10.1109/TUFFC.2014.2928 CrossRefGoogle Scholar
  25. 25.
    Montaldo G, Tanter M, Bercoff J, Benech N, Fink M (2009) Coherent plane-wave compounding for very high frame rate ultrasonography and transient elastography. IEEE Trans Ultrason Ferroelectr Freq Control 56(3):489–506.  https://doi.org/10.1109/TUFFC.2009.1067 CrossRefGoogle Scholar
  26. 26.
    Aja-Fernandez S, Curiale AH, Vegas-Sanchez-Ferrero G (2015) A local fuzzy thresholding methodology for multiregion image segmentation. Knowl Based Syst 83:1–12.  https://doi.org/10.1016/j.knosys.2015.02.029 CrossRefGoogle Scholar
  27. 27.
    Ripolles T, Martinez-Perez MJ, Vizuete J, Miralles S, Delgado F, Pastor-Navarro T (2013) Sonographic diagnosis of symptomatic ureteral calculi: usefulness of the twinkling artifact. Abdom Imaging 38(4):863–869.  https://doi.org/10.1007/s00261-012-9946-7 CrossRefGoogle Scholar
  28. 28.
    Kielar AZ, Shabana W, Vakili M, Rubin J (2012) Prospective evaluation of Doppler sonography to detect the twinkling artifact versus unenhanced computed tomography for identifying urinary tract calculi. J Ultrasound Med 31(10):1619–1625CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Biomedical EngineeringVanderbilt UniversityNashvilleUSA
  2. 2.Department of Civil and Environmental EngineeringVanderbilt UniversityNashvilleUSA
  3. 3.Department of Urologic SurgeryVanderbilt University Medical CenterNashvilleUSA

Personalised recommendations