, Volume 47, Issue 1, pp 91–98 | Cite as

Urinary proteome in inherited nephrolithiasis

  • Giovanna CapolongoEmail author
  • Miriam Zacchia
  • Alessandra Perna
  • Davide Viggiano
  • Giovambattista Capasso
Invited Review


In the last decades, proteomics has been largely applied to the Nephrology field, with the double aim to (1) elucidate the biological processes underlying renal diseases; (2) identify disease-specific biomarkers, predictor factors of therapeutic efficacy and prognostic factors of disease progression. Kidney stone disease, and in particular, inherited nephrolithiasis (INL) are not an exception. Given the multifactorial origin of these disorders, the combination of genomics and proteomics studies may complement each other, with the final objective to give a global and comprehensive mechanistic view. In this review, we summarize the results of recent proteomic studies which have expanded our knowledge about INL, focusing the attention on monogenic forms of nephrolithiasis (cystinuria, Dent’s disease, Bartter syndrome, distal renal tubular acidosis and primary hyperoxaluria), on polygenic hypercalciuria and on medullary sponge kidney disease.


Genetic nephrolithiasis Proteomics Biomarker Urine 


Compliance with ethical standards

Conflict of interest

Giovanna Capolongo declares that she has no conflict of interest. Miriam Zacchia declares that she has no conflict of interest. Alessandra Perna declares that she has no conflict of interest. Davide Viggiano declares that he has no conflict of interest. Giovambattista Capasso declares that he has no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.


  1. 1.
    Moe OW, Bonny O (2005) Genetic hypercalciuria. J Am Soc Nephrol 16(3):729–745. CrossRefGoogle Scholar
  2. 2.
    Halbritter J, Baum M, Hynes AM, Rice SJ, Thwaites DT, Gucev ZS, Fisher B, Spaneas L, Porath JD, Braun DA, Wassner AJ, Nelson CP, Tasic V, Sayer JA, Hildebrandt F (2015) Fourteen monogenic genes account for 15% of nephrolithiasis/nephrocalcinosis. J Am Soc Nephrol 26(3):543–551. CrossRefGoogle Scholar
  3. 3.
    Lieske JC, Turner ST, Edeh SN, Smith JA et al (2014) Heritability of urinary traits that contribute to nephrolithiasis. J Am Soc Nephrol 9(5):943–950. CrossRefGoogle Scholar
  4. 4.
    Mohebbi N, Ferraro PM, Gambaro G et al (2017) Tubular and genetic disorders associated with kidneystones. Urolithiasis 45:127. CrossRefGoogle Scholar
  5. 5.
    Thongboonkerd V (2008) Proteomics and kidney stone disease. Contrib Nephrol 160:142–158. CrossRefGoogle Scholar
  6. 6.
    Zacchia M, Vilasi A, Capasso A, Morelli F et al (2011) Genomic and proteomic approaches to renal cell carcinoma. J Nephrol 24(2):155–164CrossRefGoogle Scholar
  7. 7.
    Costanzo M, Zacchia M, Bruno G, Crisci D, Caterino M, Ruoppolo M (2017) Integration of proteomics and metabolomics in exploring genetic and rare metabolic diseases. Kidney Dis Basel 3(2):66–77. CrossRefGoogle Scholar
  8. 8.
    Beasley-Green A (2016) Urine proteomics in the era of mass spectrometry. Int Neurourol J 20(Suppl 2):S70–S75. CrossRefGoogle Scholar
  9. 9.
    Mischak H, Kaiser T, Walden M et al (2004) Proteomic analysis for the assessment of diabetic renal damage in humans. Clin Sci 107:485–495. CrossRefGoogle Scholar
  10. 10.
    Park MR, Wang EH, Jin DC et al (2006) Establishment of a 2-Dhuman urinary proteomic map in IgA nephropathy. Proteomics 6(3):1066–1076. CrossRefGoogle Scholar
  11. 11.
    Wittke S, Haubitz M, Walden M et al (2005) Detection of acute tubulointerstitial rejection by proteomic analysis of urinary samples in renal transplant recipients. Am J Transplant 5(10):2479–2488. CrossRefGoogle Scholar
  12. 12.
    Caterino M, Zacchia M, Costanzo M, Bruno G, Arcaniolo D, Trepiccione F, Siciliano RA, Mazzeo MF, Ruoppolo M, Capasso G (2018) Urine proteomics revealed a significant correlation between urine–fibronectin abundance and estimated-GFR decline in patients with Bardet–Biedl syndrome. Kidney Blood Press Res 43(2):389–405. CrossRefGoogle Scholar
  13. 13.
    Diedrich B, Dengjel J (2017) Insights into autosomal dominant polycystic kidney disease by quantitative mass spectrometry-based proteomics. Cell Tissue Res 369(1):41–51. CrossRefGoogle Scholar
  14. 14.
    Cadieux PA, Beiko DT, Watterson JD, Burton JP, Howard JC, Knudsen BE et al (2004) Surface-enhanced laser desorption/ionization-time of flight-mass spectrometry (SELDI-TOF-MS): a new proteomic urinary test for patients with urolithiasis. J Clin Lab Anal 18(3):170–175. CrossRefGoogle Scholar
  15. 15.
    Raj DA, Fiume I, Capasso G, Pocsfalvi G (2012) Urinary exosomes for protein biomarker research. Kidney Int 81(12):1263–1272. CrossRefGoogle Scholar
  16. 16.
    Pisitkun T, Shen RF, Knepper MA (2004) Identification and proteomic profiling of exosomes in human urine. Proc Natl Acad Sci USA 101:13368– 13373. CrossRefGoogle Scholar
  17. 17.
    Zhou H, Yuen PS, Pisitkun T, Gonzales PA et al (2006) Collection, storage, preservation, and normalization of human urinary exosomes for biomarker discovery. Kidney Int 69:1471–1476. CrossRefGoogle Scholar
  18. 18.
    Cheruvanky A, Zhou H, Pisitkun T, Kopp JB, Knepper MA, Yuen PS, Star RA (2007) Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. Am J Physiol Renal Physiol 292:F1657– F1661. CrossRefGoogle Scholar
  19. 19.
    Gonzales PA, Pisitkun T, Hoffert JD, Tchapyjnikov D, Star RA, Kleta R, Wang NS, Knepper MA (2009) Large-scale proteomics and phosphoproteomics of urinary exosomes. J Am Soc Nephrol 20(2):363–379. CrossRefGoogle Scholar
  20. 20.
    Klein J, Bascands JL, Mischak H, Schanstra JP (2016) The role of urinary peptidomics in kidney disease research. Kidney Int 89(3):539–545. CrossRefGoogle Scholar
  21. 21.
    Chandramouli K, Qian PY (2009) Proteomics: challenges, techniques and possibilities to overcome biological sample complexity. Hum Genom Proteom. 2009:239204. Google Scholar
  22. 22.
    Zacchia M, Abategiovanni ML, Stratigis S, Capasso G (2016) Potassium: from physiology to clinical implications. Kidney Dis Basel 2(2):72–79. CrossRefGoogle Scholar
  23. 23.
    Simeoni M, Damiano S, Capolongo G, Trepiccione F, Zacchia M, Fuiano G, Capasso G (2017) Rare renal diseases can be used as tools to investigate common kidney disorders. Kidney Dis Basel 3(2):43–49. CrossRefGoogle Scholar
  24. 24.
    Zacchia M, Tian X, Zona E, Alpern RJ, Preisig PA (2018) Acid stimulation of the citrate transporter NaDC-1 requires Pyk2 and ERK1/2 signaling pathways. J Am Soc Nephrol 29(6):1720–1730. CrossRefGoogle Scholar
  25. 25.
    Gasparini P, Calonge MJ, Bisceglia L, Purroy J, Dianzani I, Notarangelo A, Rousaud F, Gallucci M, Testar X, Ponzone A et al (1995) Molecular genetics of cystinuria: identification of four new mutations and seven polymorphisms, and evidence for genetic heterogeneity. Am J Hum Genet 57(4):781–788Google Scholar
  26. 26.
    Rhodes HL, Yarram-Smith L, Rice SJ et al (2015) Clinical and genetic analysis of patients with cystinuria in the United Kingdom. Clin J Am Soc Nephrol 7(7):1235–1245. 10).CrossRefGoogle Scholar
  27. 27.
    Bourderioux M, Nguyen-Khoa T, Chhuon C, Jeanson L, Tondelier D, Walczak M, Ollero M, Bekri S, Knebelmann B, Escudier E, Escudier B, Edelman A, Guerrera IC (2015) A new workflow for proteomic analysis of urinary exosomes and assessment in cystinuria patients. J Proteom Res 14(1):567–577. CrossRefGoogle Scholar
  28. 28.
    Kovacevic L, Lu H, Goldfarb DS, Lakshmanan Y, Caruso JA (2015) Urine proteomic analysis in cystinuric children with renal stones. J Pediatr Urol 11(4):217. CrossRefGoogle Scholar
  29. 29.
    Lieske JC, Milliner DS, Beara-Lasic L, Harris P, Cogal A, Abrash E (2012) Dent disease. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Stephens K, Amemiya A (eds), GeneReviews®. University of Washington, Seattle, 1993–2018Google Scholar
  30. 30.
    Vilasi A, Capasso G (2010) Proteomics and tubulopathies. J Nephrol 23(Suppl 16):S221–S227Google Scholar
  31. 31.
    Cutillas PR, Chalkley RJ, Hansen KC et al (2004) The urinary proteome in Fanconi syndrome implies specificity in the reabsorption of proteins by renal proximal tubule cells. Am J Physiol Renal Physiol 287(3):F353–F364. CrossRefGoogle Scholar
  32. 32.
    Vilasi A, Cutillas PR, Maher AD et al (2007) Combined proteomic and metabonomic studies in three genetic forms of the renal Fanconi syndrome. Am J Physiol Renal Physiol 293(2):F456–F467. CrossRefGoogle Scholar
  33. 33.
    Pereira PC, Miranda DM, Oliveira EA, Silva AC (2009) Molecular pathophysiology of renal tubular acidosis. Curr Genom 10:51–59. CrossRefGoogle Scholar
  34. 34.
    Santucci L, Candiano G, Anglani F, Bruschi M, Tosetto E et al (2016) Urine proteome analysis in Dent’s disease shows high selective changes potentially involved in chronic renal damage. J Proteom 130:26–32. CrossRefGoogle Scholar
  35. 35.
    Unwin RJ, Capasso G (2006) Bartter’s and Gitelman’s syndromes: their relationship to the actions of loop and thiazide diuretics. Curr Opin Pharmacol 6(2):208–213. CrossRefGoogle Scholar
  36. 36.
    Petrazzuolo O, Trepiccione F, Zacchia M, Capasso G (2010) Hypertension and renal calcium transport. J Nephrol 16:S112–S117Google Scholar
  37. 37.
    Zacchia M, Di Iorio V, Trepiccione F, Caterino M, Capasso G (2017) The kidney in bardet–biedl syndrome: possible pathogenesis of urine concentrating defect. Kidney Dis Basel 3(2):57–65. CrossRefGoogle Scholar
  38. 38.
    Zacchia M, Capasso G (2015) The importance of uromodulin as regulator of salt reabsorption along the thick ascending limb. Nephrol Dial Transplant 30(2):158–160. CrossRefGoogle Scholar
  39. 39.
    Zacchia M, Capasso G (2011) Dehydration: a new modulator of Klotho expression. Am J Physiol Renal Physiol 301(4):F743–F744. CrossRefGoogle Scholar
  40. 40.
    Zacchia M, Capolongo G, Rinaldi L, Capasso G (2018) The importance of the thick ascending limb of Henle’s loop in renal physiology and pathophysiology. Int J Nephrol Renovasc Dis 15:11:81–92. CrossRefGoogle Scholar
  41. 41.
    Corbetta S, Raimondo F, Tedeschi S et al (2015) Urinary exosomes in the diagnosis of Gitelman and Bartter syndromes. Nephrol Dial Transplant 30(4):621–630. CrossRefGoogle Scholar
  42. 42.
    Isobe K, Mori T, Asano T et al (2013) Development of enzyme-linked immuno- sorbent assays for urinary thiazide-sensitive Na–Cl cotransporter measurement. Am J Physiol Renal Physiol 305:F1374–F1381. CrossRefGoogle Scholar
  43. 43.
    Fuster DG, Moe OW (2018) Incomplete distal renal tubular acidosis and kidney stones. Adv Chronic Kidney Dis 25(4):366–374. CrossRefGoogle Scholar
  44. 44.
    Enerbäck S, Nilsson D, Edwards N et al (2018) Acidosis and deafness in patients with recessive mutations in FOXI1. JASN 29(3):1041–1048. Google Scholar
  45. 45.
    Zacchia M, Preisig P (2010) Low urinary citrate: an overview. J Nephrol 23(Suppl 16):S49–S56Google Scholar
  46. 46.
    Gambaro G, Croppi E, Coe F, Lingeman J, Moe O et al. Consensus Conference Group (2016) Metabolic diagnosis and medical prevention of calcium nephrolithiasis and its systemic manifestations: a consensus statement. J Nephrol 29(6):715–734. CrossRefGoogle Scholar
  47. 47.
    Pathare G, Dhayat N, Mohebbi N, Wagner CA, Cheval L, Neuhaus TJ, Fuster DG (2018) Acute regulated expression of pendrin in human urinary exosomes. Pflugers Arch 470(2):427–438. CrossRefGoogle Scholar
  48. 48.
    Pathare G, Dhayat NA, Mohebbi N, Wagner CA, Bobulescu IA, Moe OW, Fuster DG (2018) Changes in V-ATPase subunits of human urinary exosomes reflect the renal response to acute acid/alkali loading and the defects in distal renal tubular acidosis. Kidney Int 93(4):871–880. CrossRefGoogle Scholar
  49. 49.
    Luft FC, Wagner CA (2018) Pendred, pendrin, pseudohypoaldosteronism type II, and renal tubular acidosis. Kidney Int 94(3):457–459. CrossRefGoogle Scholar
  50. 50.
    Hoppe B, Beck BB, Milliner DS (2009) The primary hyperoxalurias. Kidney Int 75(12):1264–1271. CrossRefGoogle Scholar
  51. 51.
    Brooks ER, Hoppe B, Milliner DS, Salido E et al (2016) Assessment of urine proteomics in type 1 primary hyperoxaluria. Am J Nephrol 43(4):293–303. CrossRefGoogle Scholar
  52. 52.
    Hernández-Fernaud JR, Salido E (2010) Differential expression of liver and kidney proteins in a mouse model for primary hyperoxaluria type I. FEBS J 277(22):4766–4774. CrossRefGoogle Scholar
  53. 53.
    Coe FL, Parks JH, Moore ES (1979) Familial idiopathic hypercalciuria. N Engl J Med 300:337–340. CrossRefGoogle Scholar
  54. 54.
    Merchant ML, Cummins TD, Wilkey DW, Salyer SA et al (2008) Proteomic analysis of renal calculi indicates an important role for inflammatory processes in calcium stone formation. Am J Physiol Renal Physiol 295(4):F1254–F1258. CrossRefGoogle Scholar
  55. 55.
    Pak CYC, Adams-Huet B, Poindexter JR, Pearle MS, Peterson RD, Moe OW (2004) Relative effect of urinary calcium and oxalate on saturation of calcium oxalate. Kidney Int 66:2032–2037. CrossRefGoogle Scholar
  56. 56.
    Canales BK, Anderson L, Higgins L et al (2010) Proteomic of human calcium kidney stone. Urology 76:1017–1020. CrossRefGoogle Scholar
  57. 57.
    Baggio B, Gambaro G, Ossi E et al (1983) Increased urinary excretion of renal enzymes in idiopathic calcium oxalate nephrolithiasis. J Urol 129(6):1161–1162. CrossRefGoogle Scholar
  58. 58.
    Grover P, Resnick M (1995) Evidence for the presence of abnormal proteins in the urine of recurrent stone formers. J Urol 153:1716–1721. CrossRefGoogle Scholar
  59. 59.
    Ryall RL (2004) Macromolecules and urolithiasis: parallels and paradoxes. Nephron Physiol 98:p37–p42. CrossRefGoogle Scholar
  60. 60.
    Okumura N, Tsujihata M, Momohara C, Yoshioka I, Suto K et al (2013) Diversity in protein profiles of individual calcium oxalate kidney stones. PLoS One 8(7):e68624. CrossRefGoogle Scholar
  61. 61.
    Wright CA, Howles S, Trudgian DC et al (2011) Label-free quantitative proteomics reveals differentially regulated proteins influencing urolithiasis. Mol Cell Proteom 10(8):M110.005686. CrossRefGoogle Scholar
  62. 62.
    Sakhaee K, Capolongo G, Maalouf NM, Pasch A, Moe OW, Poindexter J, Adams-Huet B (2012) Metabolic syndrome and the risk of calcium stones. Nephrol Dial Transplant 27(8):3201–3209. CrossRefGoogle Scholar
  63. 63.
    Semangoen T, Sinchaikul S, Chen ST, Thongboonkerd V (2008) Altered proteins in MDCK renal tubular cells in response to calcium oxalate dihydrate crystal adhesion: a proteomics approach. J Proteom Res 7(7):2889–2896. CrossRefGoogle Scholar
  64. 64.
    Chutipongtanate S, Fong-ngern K, Peerapen P, Thongboonkerd V (2012) High calcium enhances calcium oxalate crystal binding capacity of renal tubular cells via increased surface annexin A1 but impairs their proliferation and healing. J Proteom Res 11(7):3650–3663. CrossRefGoogle Scholar
  65. 65.
    Kovacevic L, Lu H, Caruso JA, Lakshmanan Y (2016) Renal tubular dysfunction in pediatric urolithiasis: proteomic evidence. Urology 92:100–105. CrossRefGoogle Scholar
  66. 66.
    Sikora P, Glatz S, Beck BB et al (2003) Urinary NAG in children with urolithiasis, nephrocalcinosis, or risk of urolithiasis. Pediatr Nephrol 18:996–999. CrossRefGoogle Scholar
  67. 67.
    Fabris A, Anglani F, Lupo A et al (2013) Medullary sponge kidney: state of the art. Nephrol Dial Transplant 28:1111–1119. CrossRefGoogle Scholar
  68. 68.
    Rommel D, Pirson Y (2001) Medullary sponge kidney–part of a congenital syndrome. Nephrol Dial Transplant 16:634–636CrossRefGoogle Scholar
  69. 69.
    Fabris A, Lupo A, Ferraro PM et al (2013) Familial clustering of medullary sponge kidney is autosomal dominant with reduced penetrance and variable expressivity. Kidney Int 83:272–277. CrossRefGoogle Scholar
  70. 70.
    Torregrossa R, Anglani F, Fabris A et al (2010) Identification of GDNF gene sequence variations in patients with medullary sponge kidney disease. Clin J Am Soc Nephrol 5:1205–1210. CrossRefGoogle Scholar
  71. 71.
    Gambaro G, Danza FM, Fabris A (2013) Medullary sponge kidney. Curr Opin Nephrol Hypertens 22(4):421–426. CrossRefGoogle Scholar
  72. 72.
    Fabris A, Bruschi M, Santucci L et al (2017) Proteomic-based research strategy identified laminin subunit alpha 2 as a potential urinary-specific biomarker for the medullary sponge kidney disease. Kidney Int 91(2):459–468. CrossRefGoogle Scholar
  73. 73.
    Chutipongtanate S (2017) Breaking the ice: urine proteomics of medullary sponge kidney disease. Kidney Int 91(2):281–283. CrossRefGoogle Scholar
  74. 74.
    Hogan MC, Bakeberg JL, Gainullin VG et al (2015) Identification of biomarkers for PKD1 using urinary exosomes. J Am Soc Nephrol 26(7):1661–1670. CrossRefGoogle Scholar
  75. 75.
    Choi DS (2015) Urinary extracellular vesicles for biomarker source to monitor polycystic kidney disease. Proteomics Clin Appl 9(5–6):447–448. CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Chair of Nephrology, Department of Translational MedicineUniversity of Campania “Luigi Vanvitelli”NaplesItaly

Personalised recommendations